Reputation: 588
I have a pandas dataframe df
import pandas as pd
lst = [23682, 21963, 9711, 21175, 13022,1662,7399, 13679, 17654,4567,23608,2828, 1234]
lst_match = ['[21963]','[21175]', '[1662 7399 13679 ]','[17654 23608]','[2828]','0','0','0','0','0','0', '0','0' ]
df = pd.DataFrame(list(zip(lst, lst_match)),columns=['ID','ID_match'])
df
ID ID_match
0 23682 [21963]
1 21963 [21175]
2 9711 [1662 7399 13679]
3 21175 [17654 23608]
4 13022 [2828]
5 1662 0
6 7399 0
7 13679 0
8 17654 0
9 4567 0
10 23608 0
11 2828 0
12 1234 0
The values in ID_match column are also IDs though in a list in string format.
I want to create a dataframe of unique IDs in such a manner that my unique ID frame should contain all the ID which have some value other than 0 in ID_match column and those IDs' which are mentioned in the ID_match column.
so my output dataframe of unique ID's must look like:
ID
0 23682
1 21963
2 9711
3 21175
4 13022
5 1662
6 7399
7 13679
8 17654
9 23608
10 2828
How can I do this with python pandas?
Upvotes: 3
Views: 2053
Reputation: 862701
Use:
s = (df[df['ID_match'] != '0']
.set_index('ID')['ID_match']
.str.strip('[ ]')
.str.split('\s+', expand=True)
.stack())
print (s)
23682 0 21963
21963 0 21175
9711 0 1662
1 7399
2 13679
21175 0 17654
1 23608
13022 0 2828
dtype: object
vals = s.index.get_level_values(0).to_series().append(s.astype(int)).unique()
df = pd.DataFrame({'ID':vals})
print (df)
ID
0 23682
1 21963
2 9711
3 21175
4 13022
5 1662
6 7399
7 13679
8 17654
9 23608
10 2828
Explanation:
0
value by boolean indexing
ID
column by set_index
[ ]
with strip
Then get first level of MultiIndex
by get_level_values
and convert to_series
append
Series s
converted to integer
sunique
values and last call DataFrame
contructorUpvotes: 1
Reputation: 164683
These look like string representations of lists. So you can use ast.literal_eval
and itertools.chain
:
from ast import literal_eval
from itertools import chain
s = df['ID_match'].astype(str).str.replace(' ', ',').apply(literal_eval)
L = list(chain.from_iterable(s[s != 0]))
res = pd.DataFrame({'ID': df.loc[df['ID_match'] != 0, 'ID'].tolist() + L})\
.drop_duplicates().reset_index(drop=True)
print(res)
ID
0 23682
1 21963
2 9711
3 21175
4 13022
5 1662
6 7399
7 13679
8 17654
9 23608
10 2828
Upvotes: 0