Reputation: 1523
This is an extension of the question posed here (quoted below)
I have a matrix (2d numpy ndarray, to be precise):
A = np.array([[4, 0, 0], [1, 2, 3], [0, 0, 5]])
And I want to roll each row of A independently, according to roll values in another array:
r = np.array([2, 0, -1])
That is, I want to do this:
print np.array([np.roll(row, x) for row,x in zip(A, r)]) [[0 0 4] [1 2 3] [0 5 0]]
Is there a way to do this efficiently? Perhaps using fancy indexing tricks?
The accepted solution was:
rows, column_indices = np.ogrid[:A.shape[0], :A.shape[1]]
# Use always a negative shift, so that column_indices are valid.
# (could also use module operation)
r[r < 0] += A.shape[1]
column_indices = column_indices - r[:,np.newaxis]
result = A[rows, column_indices]
I would basically like to do the same thing, except when an index gets rolled "past" the end of the row, I would like the other side of the row to be padded with a NaN, rather than the value move to the "front" of the row in a periodic fashion.
Maybe using np.pad
somehow? But I can't figure out how to get that to pad different rows by different amounts.
Upvotes: 7
Views: 7197
Reputation: 3182
Based on @Seberg and @yann-dubois answers in the non-nan case, I've written a method that:
axis
argument)fill
to either np.nan, any other "fill value" or False to allow regular rolling across the array edge.cols, rows = 1024, 2048
arr = np.stack(rows*(np.arange(cols,dtype=float),))
shifts = np.random.randint(-cols, cols, rows)
np.testing.assert_array_almost_equal(row_roll(arr, shifts), strided_indexing_roll(arr, shifts))
# True
%timeit row_roll(arr, shifts)
# 25.9 ms ± 161 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit strided_indexing_roll(arr, shifts)
# 29.7 ms ± 446 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
def row_roll(arr, shifts, axis=1, fill=np.nan):
"""Apply an independent roll for each dimensions of a single axis.
Parameters
----------
arr : np.ndarray
Array of any shape.
shifts : np.ndarray, dtype int. Shape: `(arr.shape[:axis],)`.
Amount to roll each row by. Positive shifts row right.
axis : int
Axis along which elements are shifted.
fill: bool or float
If True, value to be filled at missing values. Otherwise just rolls across edges.
"""
if np.issubdtype(arr.dtype, int) and isinstance(fill, float):
arr = arr.astype(float)
shifts2 = shifts.copy()
arr = np.swapaxes(arr,axis,-1)
all_idcs = np.ogrid[[slice(0,n) for n in arr.shape]]
# Convert to a positive shift
shifts2[shifts2 < 0] += arr.shape[-1]
all_idcs[-1] = all_idcs[-1] - shifts2[:, np.newaxis]
result = arr[tuple(all_idcs)]
if fill is not False:
# Create mask of row positions above negative shifts
# or below positive shifts. Then set them to np.nan.
*_, nrows, ncols = arr.shape
mask_neg = shifts < 0
mask_pos = shifts >= 0
shifts_pos = shifts.copy()
shifts_pos[mask_neg] = 0
shifts_neg = shifts.copy()
shifts_neg[mask_pos] = ncols+1 # need to be bigger than the biggest positive shift
shifts_neg[mask_neg] = shifts[mask_neg] % ncols
indices = np.stack(nrows*(np.arange(ncols),))
nanmask = (indices < shifts_pos[:, None]) | (indices >= shifts_neg[:, None])
result[nanmask] = fill
arr = np.swapaxes(result,-1,axis)
return arr
Upvotes: 0
Reputation: 221684
Inspired by Roll rows of a matrix independently's solution, here's a vectorized one based on np.lib.stride_tricks.as_strided
-
from skimage.util.shape import view_as_windows as viewW
def strided_indexing_roll(a, r):
# Concatenate with sliced to cover all rolls
p = np.full((a.shape[0],a.shape[1]-1),np.nan)
a_ext = np.concatenate((p,a,p),axis=1)
# Get sliding windows; use advanced-indexing to select appropriate ones
n = a.shape[1]
return viewW(a_ext,(1,n))[np.arange(len(r)), -r + (n-1),0]
Sample run -
In [76]: a
Out[76]:
array([[4, 0, 0],
[1, 2, 3],
[0, 0, 5]])
In [77]: r
Out[77]: array([ 2, 0, -1])
In [78]: strided_indexing_roll(a, r)
Out[78]:
array([[nan, nan, 4.],
[ 1., 2., 3.],
[ 0., 5., nan]])
Upvotes: 7
Reputation: 1523
I was able to hack this together with linear indexing...it gets the right result but performs rather slowly on large arrays.
A = np.array([[4, 0, 0],
[1, 2, 3],
[0, 0, 5]]).astype(float)
r = np.array([2, 0, -1])
rows, column_indices = np.ogrid[:A.shape[0], :A.shape[1]]
# Use always a negative shift, so that column_indices are valid.
# (could also use module operation)
r_old = r.copy()
r[r < 0] += A.shape[1]
column_indices = column_indices - r[:,np.newaxis]
result = A[rows, column_indices]
# replace with NaNs
row_length = result.shape[-1]
pad_inds = []
for ind,i in np.enumerate(r_old):
if i > 0:
inds2pad = [np.ravel_multi_index((ind,) + (j,),result.shape) for j in range(i)]
pad_inds.extend(inds2pad)
if i < 0:
inds2pad = [np.ravel_multi_index((ind,) + (j,),result.shape) for j in range(row_length+i,row_length)]
pad_inds.extend(inds2pad)
result.ravel()[pad_inds] = nan
Gives the expected result:
print result
[[ nan nan 4.]
[ 1. 2. 3.]
[ 0. 5. nan]]
Upvotes: 0