Reputation: 902
I have akka system which is basically two producer actors that send messages to one consumer actor. In a simplified form I have something like this:
class ProducerA extends Actor {
def receive = {
case Produce => Consumer ! generateMessageA()
}
... more code ...
}
class ProducerB extends Actor {
def receive = {
case Produce => Consumer ! generateMessageB()
}
... more code ...
}
class Consumer extends Actor {
def receive = {
case A => handleMessageA(A)
case B => handleMessageB(B)
}
... more code ...
}
And they are all siblings of the same akka system.
I am trying to figure out how to terminate this system gracefully. This means that on shutdown I want ProducerA
and ProducerB
to stop immediately and then I want Consumer
to finish processing whatever messages are left in the message queue and then shutdown.
It seems like what I want is for the Consumer
actor to be able to watch for the termination of both ProducerA
and ProducerB
. Or generally, it seems like what I want is to be able to send a PoisonPill
message to the Consumer
after both the producers are stopped.
https://alvinalexander.com/scala/how-to-monitor-akka-actor-death-with-watch-method
The above tutorial has a pretty good explanation of how one actor can watch for the termination of one other actor but not sure how an actor could watch for the termination of multiple actors.
Upvotes: 0
Views: 2049
Reputation: 902
so the solution I ended up going with was inspired by Derek Wyatt's terminator pattern
val shutdownFut = Future.sequence(
Seq(
gracefulStop(producerA, ProducerShutdownWaitSeconds seconds),
gracefulStop(producerB, ProducerShutdownWaitSeconds seconds),
)
).flatMap(_ => gracefulStop(consumer, ConsumerShutdownWaitSeconds seconds))
Await.result(shutdownFut, (ProducerShutdownWaitSeconds seconds) + (ConsumerShutdownWaitSeconds seconds))
This was more or less exactly what I wanted. The consumer shutdown waits for the producers to shutdown based on the fulfillment of futures. Furthermore, the whole shutdown itself results in a future which you can wait on therefore being able to keep the thread up long enough for everything to clean up properly.
Upvotes: 0
Reputation: 19507
An actor can watch multiple actors simply via multiple invocations of context.watch
, passing in a different ActorRef
with each call. For example, your Consumer
actor could watch the termination of the Producer
actors in the following way:
case class WatchMe(ref: ActorRef)
class Consumer extends Actor {
var watched = Set[ActorRef]()
def receive = {
case WatchMe(ref) =>
context.watch(ref)
watched = watched + ref
case Terminated(ref) =>
watched = watched - ref
if (watched.isEmpty) self ! PoisonPill
// case ...
}
}
Both Producer
actors would send their respective references to Consumer
, which would then monitor the Producer
actors for termination. When the Producer
actors are both terminated, the Consumer
sends a PoisonPill
to itself. Because a PoisonPill
is treated like a normal message in an actor's mailbox, the Consumer
will process any messages that are already enqueued before handling the PoisonPill
and shutting itself down.
A similar pattern is described in Derek Wyatt's "Shutdown Patterns in Akka 2" blog post, which is mentioned in the Akka documentation.
Upvotes: 2
Reputation: 1154
import akka.actor._
import akka.util.Timeout
import scala.concurrent.duration.DurationInt
class Producer extends Actor {
def receive = {
case _ => println("Producer received a message")
}
}
case object KillConsumer
class Consumer extends Actor {
def receive = {
case KillConsumer =>
println("Stopping Consumer After All Producers")
context.stop(self)
case _ => println("Parent received a message")
}
override def postStop(): Unit = {
println("Post Stop Consumer")
super.postStop()
}
}
class ProducerWatchers(producerListRef: List[ActorRef], consumerRef: ActorRef) extends Actor {
producerListRef.foreach(x => context.watch(x))
context.watch(consumerRef)
var producerActorCount = producerListRef.length
implicit val timeout: Timeout = Timeout(5 seconds)
override def receive: Receive = {
case Terminated(x) if producerActorCount == 1 && producerListRef.contains(x) =>
consumerRef ! KillConsumer
case Terminated(x) if producerListRef.contains(x) =>
producerActorCount -= 1
case Terminated(`consumerRef`) =>
println("Killing ProducerWatchers On Consumer End")
context.stop(self)
case _ => println("Dropping Message")
}
override def postStop(): Unit = {
println("Post Stop ProducerWatchers")
super.postStop()
}
}
object ProducerWatchers {
def apply(producerListRef: List[ActorRef], consumerRef: ActorRef) : Props = Props(new ProducerWatchers(producerListRef, consumerRef))
}
object AkkaActorKill {
def main(args: Array[String]): Unit = {
val actorSystem = ActorSystem("AkkaActorKill")
implicit val timeout: Timeout = Timeout(10 seconds)
val consumerRef = actorSystem.actorOf(Props[Consumer], "Consumer")
val producer1 = actorSystem.actorOf(Props[Producer], name = "Producer1")
val producer2 = actorSystem.actorOf(Props[Producer], name = "Producer2")
val producer3 = actorSystem.actorOf(Props[Producer], name = "Producer3")
val producerWatchers = actorSystem.actorOf(ProducerWatchers(List[ActorRef](producer1, producer2, producer3), consumerRef),"ProducerWatchers")
producer1 ! PoisonPill
producer2 ! PoisonPill
producer3 ! PoisonPill
Thread.sleep(5000)
actorSystem.terminate
}
}
It can be implemented using ProducerWatchers actor, which manages producers killed, once all the producers are killed you can kill the Consumer actor, and then the ProducerWatchers actor.
Upvotes: 1