Reputation: 323
What is wrong with the following code? The tf.assign
op works just fine when applied to a slice of a tf.Variable
if it happens outside of a loop. But, in this context, it gives the error below.
import tensorflow as tf
v = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
n = len(v)
a = tf.Variable(v, name = 'a')
def cond(i, a):
return i < n
def body(i, a):
tf.assign(a[i], a[i-1] + a[i-2])
return i + 1, a
i, b = tf.while_loop(cond, body, [2, a])
results in:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/hrbigelow/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 3210, in while_loop
result = loop_context.BuildLoop(cond, body, loop_vars, shape_invariants)
File "/home/hrbigelow/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2942, in BuildLoop
pred, body, original_loop_vars, loop_vars, shape_invariants)
File "/home/hrbigelow/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2879, in _BuildLoop
body_result = body(*packed_vars_for_body)
File "/home/hrbigelow/ai/lb-wavenet/while_var_test.py", line 11, in body
tf.assign(a[i], a[i-1] + a[i-2])
File "/home/hrbigelow/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/state_ops.py", line 220, in assign
return ref.assign(value, name=name)
File "/home/hrbigelow/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 697, in assign
raise ValueError("Sliced assignment is only supported for variables")
ValueError: Sliced assignment is only supported for variables
Upvotes: 5
Views: 1348
Reputation: 24591
Your variable is not an output of the operations run inside your loop, it is an external entity living outside the loop. So you do not have to provide it as an argument.
Also, you need to enforce the update to take place, for example using tf.control_dependencies
in body
.
import tensorflow as tf
v = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
n = len(v)
a = tf.Variable(v, name = 'a')
def cond(i):
return i < n
def body(i):
op = tf.assign(a[i], a[i-1] + a[i-2])
with tf.control_dependencies([op]):
return i + 1
i = tf.while_loop(cond, body, [2])
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
i.eval()
print(a.eval())
# [ 1 1 2 3 5 8 13 21 34 55 89]
Possibly you may want to be cautious and set parallel_iterations=1
to enforce the loop to run sequentially.
Upvotes: 6
Reputation: 3288
It makes sense from a CUDA perspective to disallow assignment of individual indices as it negates all performance benefits of heterogeneous parallel computing.
I know this adds a bit of computational overhead but it works.
import tensorflow as tf
v = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
n = len(v)
a = tf.Variable(v, name = 'a',dtype=tf.float32)
def cond(i, a):
return i < n
def body(i, a1):
e = tf.eye(n,n)[i]
a1 = a1 + e *(a1[i-1] + a1[i-2])
return i + 1, a1
i, b = tf.while_loop(cond, body, [2, a])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print('i: ',sess.run(i))
print('b: ',sess.run(b))
Upvotes: 1