Reputation: 97
I have a time series dataset as below. I would like to split this into multiple 20s bins, get the min and max timestamps in each bin and add a flag to each bin based on whether there is at least 1 successful result (success: result = 0; failed: result = 1)
data = [{"product": "abc", "test_tstamp": 1530693399, "result": 1},
{"product": "abc", "test_tstamp": 1530693405, "result": 0},
{"product": "abc", "test_tstamp": 1530693410, "result": 1},
{"product": "abc", "test_tstamp": 1530693411, "result": 0},
{"product": "abc", "test_tstamp": 1530693415, "result": 0},
{"product": "abc", "test_tstamp": 1530693420, "result": 0},
{"product": "abc", "test_tstamp": 1530693430, "result": 0},
{"product": "abc", "test_tstamp": 1530693431, "result": 0}]
I'm able to cut the data into 20s intervals using pandas.cut()and get the min and max timestamps for each bin
import numpy as np
import pandas as pd
arange = np.arange(1530693398, 1530693440, 20)
data = [{"product": "abc", "test_tstamp": 1530693399, "result": 1},
{"product": "abc", "test_tstamp": 1530693405, "result": 0},
{"product": "abc", "test_tstamp": 1530693410, "result": 1},
{"product": "abc", "test_tstamp": 1530693411, "result": 0},
{"product": "abc", "test_tstamp": 1530693415, "result": 0},
{"product": "abc", "test_tstamp": 1530693420, "result": 1},
{"product": "abc", "test_tstamp": 1530693430, "result": 1},
{"product": "abc", "test_tstamp": 1530693431, "result": 1}]
df = pd.DataFrame(data)
df['bins'] = pd.cut(df['test_tstamp'], arange)
output_1 = df.groupby(["bins"]).agg({'result': np.ma.count, 'test_tstamp': {'mindate': np.min, 'maxdate': np.max}})
test_tstamp result
maxdate mindate count
bins
(1530693398, 1530693418] 1530693415 1530693399 5
(1530693418, 1530693438] 1530693431 1530693420 3
and able to find result success
and result failed
using groupby()
output_2 = df.groupby(["bins", "result"]).result.count()
result
bins result
(1530693398, 1530693418] 0 3
1 2
(1530693418, 1530693438] 0 3
I'm not sure how to combine output_1
and output_2
so that instead of result count
column above, I would like to have result success
, result failed
and flag
columns associated with each bin
.
Expected Output:
test_tstamp result flag
maxdate mindate success failed
bins
(1530693398, 1530693418] 1530693415 1530693399 3 2 True
(1530693418, 1530693438] 1530693431 1530693420 0 3 False
Any pointers would help! Thank you!
Upvotes: 0
Views: 132
Reputation: 403218
Unstack outptut_2
and then concatenate the two outputs:
output_2 = (
output_2
.unstack(fill_value=0)
.rename(columns={0 : 'success', 1 : 'failed'}))
df = (pd.concat([output_1.test_tstamp, output_2], axis=1, keys=['test_tstamp', 'result'])
.assign(flag=output_2.success.gt(0)))
test_tstamp result flag
result mindate maxdate success failed
bins
(1530693398, 1530693418] 1530693399 1530693415 3 2 True
(1530693418, 1530693438] 1530693420 1530693431 0 3 False
Upvotes: 1