Reputation: 483
I have a df like:
d = {'Parent': ['abc', 'abc', 'def', 'mno'], 'Child': ['def', 'ghi', 'jkl', 'pqr']}
df = pd.DataFrame(data=d)
and would like to get a df like:
d2 = {'Ancestor': ['abc', 'abc', 'abc', 'mno'], 'Descendant': ['def', 'ghi', 'jkl', 'pqr']}
df2 = pd.DataFrame(data = d2)
where abc
and mno
are the only ancestors and the rest are listed as descendants to their respective ancestor.
So far I have tried networkx
but without any luck.
EDIT: example only showing three tiers but tree structure can be any number of tiers.
Upvotes: 0
Views: 50
Reputation: 153500
I think you can do this using newtorkx with directed graphs:
import pandas as pd
import networkx as nx
d = {'Parent': ['abc', 'abc', 'def', 'mno'], 'Child': ['def', 'ghi', 'jkl', 'pqr']}
df = pd.DataFrame(data=d)
dG = nx.from_pandas_edgelist(df, 'Parent', 'Child', create_using=nx.DiGraph())
df2 = pd.DataFrame({'Ancenstor':[[i for i in nx.ancestors(dG,i) if i not in df['Child'].tolist()][0] for i in df.Child],
'Descendent':df['Child']})
df2
Output:
Ancenstor Descendent
0 abc def
1 abc ghi
2 abc jkl
3 mno pqr
Upvotes: 2