Reputation: 365
I'm calculating the affine transformation I need from a a few points in a 3D space and using numpy.linalg.lstsq to do so. However, the results I'm getting, while not terribly far off, are not accurate enough, even in trivially simple examples:
m = 100
xy = np.array([[0, 0, 0],
[m, 0, 0],
[m, m, 0],
[0, m, 0],
[0, 0, m],
[m, 0, m],
[m, m, m],
[0, m, m]])
uv = np.array([[0.5, 0, 0],
[m + 0.5, 0, 0],
[m+ 0.5, m, 0],
[0.5, m, 0],
[0.5, 0, m],
[m+ 0.5, 0, m],
[m+ 0.5, m, m],
[0.5, m, m]])
pts_a = np.hstack([uv, np.ones((uv.shape[0], 1))])
pts_b = np.hstack([xy, np.ones((xy.shape[0], 1))])
solution_1 = np.linalg.lstsq(pts_a, pts_b, rcond=None)[0]
The result I'm expecting from the above code is:
[[1, 0, 0, -0.5],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
The result I'm getting:
[[ 1.00000000e+00 3.49047642e-16 3.60109527e-16 -5.00000000e-01]
[ 1.77081442e-16 1.00000000e+00 -3.93150475e-16 1.80460546e-15]
[ 2.21351803e-16 -3.11848610e-16 1.00000000e+00 -6.28251374e-15]
[ 2.76689754e-18 1.06035619e-17 -1.19061095e-17 1.00000000e+00]]
Those small differences make a considerable difference in my results. Any ideas how to solve it? NOTE: I can ONLY use numpy and math for my project, so using a different library is sadly not possible! Thanks!
Upvotes: 2
Views: 1014
Reputation: 34367
Actually, the difference isn't small but quite big - you have the wrong sign for solution[0,3]
.
The problem is thath you didn't calculate the desired transformation T
but the inverse of this transformation, i.e. T^-1
.
Let's do some math:
T*X=U, with X - original vectors
U - transformed vectors
transposing it =>
X^t * T^t = U^t
| | |
\|/ \|/ \|/
A * x = b
In your program A=pts_b
and b=pts_a
, that means the transformation T
is (you have to swap pts_b
and pts_b
and to transpose the result to get the right matrix):
T = np.linalg.lstsq(pts_b, pts_a)[0].T
and voila:
>>> T
array([[ 1.00000000e+00, -8.15320034e-17, -6.59194921e-17, 5.00000000e-01],
[ -4.97379910e-16, 1.00000000e+00, 7.77156117e-16, -1.02678283e-14],
[ -2.13162819e-16, 4.44089210e-16, 1.00000000e+00, 1.91513472e-15],
[ -4.44089205e-18, -8.84708973e-17, 9.88792381e-17, 1.00000000e+00]])
PS: You have solved the equation:
X^t = U^t * (T^t)^(-1)
| | |
\|/ \|/ \|/
b = A * x
Upvotes: 1