Reputation: 512
When running a foreach loop using the doParallel package in R and FORK, each worker will start off with the same random seed thus leading to duplicate 'random' numbers.
set.seed(1)
cl <- makeCluster(2, type = "FORK")
registerDoParallel(cl)
foreach(1:4, .combine = 'c') %dopar% {rnorm(1, mean = 0, sd = 1)}
stopImplicitCluster()
[1] -0.6264538 -0.6264538 0.1836433 0.1836433
What is the best way to solve this?
Right now, I work around this problem by setting a new seed during every loop iteration, i.e.
cl <- makeCluster(2, type = "FORK")
registerDoParallel(cl)
foreach(i = 1:4, .combine = 'c') %dopar% {
set.seed(i)
rnorm(1, mean = 0, sd = 1)}
stopImplicitCluster()
[1] -0.8969145 -0.9619334 0.2167549 -0.8408555
Upvotes: 2
Views: 1868
Reputation: 26833
You can make use of doRNG
to register an additional foreach
backend for independent and reproducible random numbers:
library(doParallel)
library(doRNG)
cl <- makeCluster(2, type = "FORK")
registerDoParallel(cl)
registerDoRNG(seed = 123)
foreach(i=1:4, .combine = 'c') %dopar% {rnorm(1, mean = 0, sd = 1)}
stopImplicitCluster()
Result:
[1] 0.4254817 -0.8817684 -0.4448349 -1.7773268
attr(,"rng")
attr(,"rng")[[1]]
[1] 407 642048078 81368183 -2093158836 506506973 1421492218 -1906381517
attr(,"rng")[[2]]
[1] 407 1340772676 -1389246211 -999053355 -953732024 1888105061 2010658538
attr(,"rng")[[3]]
[1] 407 -1318496690 -948316584 683309249 -990823268 -1895972179 1275914972
attr(,"rng")[[4]]
[1] 407 524763474 1715794407 1887051490 -1833874283 494155061 -1221391662
Note that it is important here to name the iterator variable, even if it is not used within the foreach
body.
Upvotes: 4