Reputation: 189
Below is the dataframe I have as an example:
+--------------+-------+-------------+--------------+----------+-----------+
| ID | Part | RequestFrom | QTYRequested | Location | QTYOnHand |
+--------------+-------+-------------+--------------+----------+-----------+
| PartACity 1 | PartA | City 1 | 1 | LocA | 2 |
| PartACity 2 | PartA | City 2 | 1 | LocA | 2 |
| PartACity 3 | PartA | City 3 | 1 | LocA | 2 |
| PartACity 4 | PartA | City 4 | 1 | LocA | 2 |
| PartACity 5 | PartA | City 5 | 1 | LocA | 2 |
| PartACity 6 | PartA | City 6 | 1 | LocA | 2 |
| PartACity 7 | PartA | City 7 | 1 | LocA | 2 |
| PartACity 8 | PartA | City 8 | 1 | LocA | 2 |
| PartACity 9 | PartA | City 9 | 1 | LocA | 2 |
| PartACity 10 | PartA | City 10 | 1 | LocA | 2 |
| PartACity 1 | PartA | City 1 | 1 | LocB | 3 |
| PartACity 2 | PartA | City 2 | 1 | LocB | 3 |
| PartACity 3 | PartA | City 3 | 1 | LocB | 3 |
| PartACity 4 | PartA | City 4 | 1 | LocB | 3 |
| PartACity 5 | PartA | City 5 | 1 | LocB | 3 |
| PartACity 6 | PartA | City 6 | 1 | LocB | 3 |
| PartACity 7 | PartA | City 7 | 1 | LocB | 3 |
| PartACity 8 | PartA | City 8 | 1 | LocB | 3 |
| PartACity 9 | PartA | City 9 | 1 | LocB | 3 |
| PartACity 10 | PartA | City 10 | 1 | LocB | 3 |
| PartACity 1 | PartA | City 1 | 1 | LocC | 4 |
| PartACity 2 | PartA | City 2 | 1 | LocC | 4 |
| PartACity 3 | PartA | City 3 | 1 | LocC | 4 |
| PartACity 4 | PartA | City 4 | 1 | LocC | 4 |
| PartACity 5 | PartA | City 5 | 1 | LocC | 4 |
| PartACity 6 | PartA | City 6 | 1 | LocC | 4 |
| PartACity 7 | PartA | City 7 | 1 | LocC | 4 |
| PartACity 8 | PartA | City 8 | 1 | LocC | 4 |
| PartACity 9 | PartA | City 9 | 1 | LocC | 4 |
| PartACity 10 | PartA | City 10 | 1 | LocC | 4 |
+--------------+-------+-------------+--------------+----------+-----------+
I want to turn the above dataframe into this:
+-------------+-------+-------------+--------------+----------+-----------+
| ID | Part | RequestFrom | QTYRequested | Location | QTYOnHand |
+-------------+-------+-------------+--------------+----------+-----------+
| PartACity 1 | PartA | City 1 | 1 | LocA | 2 |
| PartACity 2 | PartA | City 2 | 1 | LocA | 2 |
| PartACity 3 | PartA | City 3 | 1 | LocB | 3 |
| PartACity 4 | PartA | City 4 | 1 | LocB | 3 |
| PartACity 5 | PartA | City 5 | 1 | LocB | 3 |
| PartACity 6 | PartA | City 6 | 1 | LocC | 4 |
| PartACity 7 | PartA | City 7 | 1 | LocC | 4 |
| PartACity 8 | PartA | City 8 | 1 | LocC | 4 |
| PartACity 9 | PartA | City 9 | 1 | LocC | 4 |
+-------------+-------+-------------+--------------+----------+-----------+
As you can see, The total QTYOnHand are 9, but we have 10 open request for Part A.
I want to find a better way to allocate the quantity.
Since LocA only has two quantity of PartA, so we only keep the top two rows.
LocB has 3 quantity of PartA, the next 3 quantity will be allocated to LocB.
LocC has 4 quantity of PartA, the next 4 quantity will be allocated to LocC.
Any help would be greatly appreciated!!!
Upvotes: 4
Views: 102
Reputation: 3206
Python 2.7.12 (v2.7.12:d33e0cf91556, Jun 27 2016, 15:24:40) [MSC v.1500 64 bit (AMD64)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> import pandas as pd
>>> df = pd.DataFrame({
'ID' : ['PartACity 1', 'PartACity 2', 'PartACity 3', 'PartACity 4', 'PartACity 5', 'PartACity 6', 'PartACity 7', 'PartACity 8', 'PartACity 9', 'PartACity 10', 'PartACity 1', 'PartACity 2', 'PartACity 3', 'PartACity 4', 'PartACity 5', 'PartACity 6', 'PartACity 7', 'PartACity 8', 'PartACity 9', 'PartACity 10', 'PartACity 1', 'PartACity 2', 'PartACity 3', 'PartACity 4', 'PartACity 5', 'PartACity 6', 'PartACity 7', 'PartACity 8', 'PartACity 9', 'PartACity 10'],
'Part' : ['PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA', 'PartA'],
'RequestFrom': ['City 1', 'City 2', 'City 3', 'City 4', 'City 5', 'City 6', 'City 7', 'City 8', 'City 9', 'City 10', 'City 1', 'City 2', 'City 3', 'City 4', 'City 5', 'City 6', 'City 7', 'City 8', 'City 9', 'City 10', 'City 1', 'City 2', 'City 3', 'City 4', 'City 5', 'City 6', 'City 7', 'City 8', 'City 9', 'City 10'],
'QTYRequested': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
'Location': ['LocA', 'LocA', 'LocA', 'LocA', 'LocA', 'LocA', 'LocA', 'LocA', 'LocA', 'LocA', 'LocB', 'LocB', 'LocB', 'LocB', 'LocB', 'LocB', 'LocB', 'LocB', 'LocB', 'LocB', 'LocC', 'LocC', 'LocC', 'LocC', 'LocC', 'LocC', 'LocC', 'LocC', 'LocC', 'LocC'],
'QTYOnHand': [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
})
>>> print(df)
ID Location ... QTYRequested RequestFrom
0 PartACity 1 LocA ... 1 City 1
1 PartACity 2 LocA ... 1 City 2
2 PartACity 3 LocA ... 1 City 3
3 PartACity 4 LocA ... 1 City 4
4 PartACity 5 LocA ... 1 City 5
5 PartACity 6 LocA ... 1 City 6
6 PartACity 7 LocA ... 1 City 7
7 PartACity 8 LocA ... 1 City 8
8 PartACity 9 LocA ... 1 City 9
9 PartACity 10 LocA ... 1 City 10
10 PartACity 1 LocB ... 1 City 1
11 PartACity 2 LocB ... 1 City 2
12 PartACity 3 LocB ... 1 City 3
13 PartACity 4 LocB ... 1 City 4
14 PartACity 5 LocB ... 1 City 5
15 PartACity 6 LocB ... 1 City 6
16 PartACity 7 LocB ... 1 City 7
17 PartACity 8 LocB ... 1 City 8
18 PartACity 9 LocB ... 1 City 9
19 PartACity 10 LocB ... 1 City 10
20 PartACity 1 LocC ... 1 City 1
21 PartACity 2 LocC ... 1 City 2
22 PartACity 3 LocC ... 1 City 3
23 PartACity 4 LocC ... 1 City 4
24 PartACity 5 LocC ... 1 City 5
25 PartACity 6 LocC ... 1 City 6
26 PartACity 7 LocC ... 1 City 7
27 PartACity 8 LocC ... 1 City 8
28 PartACity 9 LocC ... 1 City 9
29 PartACity 10 LocC ... 1 City 10
[30 rows x 6 columns]
Duplicate
df
astemp_df
to aggregate the quantity on hand and keep track of the quantity left for each location by creating a new columnQTYLeft
:
>>> temp_df = df
>>> temp_df = temp_df.groupby('Location').agg({'QTYOnHand':'first'})
>>> temp_df = temp_df.reset_index()
>>> temp_df['QTYLeft'] =temp_df['QTYOnHand']
>>> print(temp_df)
Location QTYOnHand QTYLeft
0 LocA 2 2
1 LocB 3 3
2 LocC 4 4
Group
df
byID
,Part
,RequestFrom
:
>>> df = df.groupby(['ID', 'Part', 'RequestFrom']).first()
>>> df = df.reset_index()
>>> print(df)
ID Part ... QTYOnHand QTYRequested
0 PartACity 1 PartA ... 2 1
1 PartACity 10 PartA ... 2 1
2 PartACity 2 PartA ... 2 1
3 PartACity 3 PartA ... 2 1
4 PartACity 4 PartA ... 2 1
5 PartACity 5 PartA ... 2 1
6 PartACity 6 PartA ... 2 1
7 PartACity 7 PartA ... 2 1
8 PartACity 8 PartA ... 2 1
9 PartACity 9 PartA ... 2 1
[10 rows x 6 columns]
Values in
ID
column are strings and thus cannot be used as an index to sort according to ascending numbers, thus we create a new temporary index calledtemp_index
first, sort thedf
in ascending order, then remove said index:
>>> df = df.assign(temp_index=[int(float(i.split(' ')[-1])) for i in df['ID']])
>>> df = df.sort_values(by='temp_index')
>>> print(df)
ID Part ... QTYRequested temp_index
0 PartACity 1 PartA ... 1 1
2 PartACity 2 PartA ... 1 2
3 PartACity 3 PartA ... 1 3
4 PartACity 4 PartA ... 1 4
5 PartACity 5 PartA ... 1 5
6 PartACity 6 PartA ... 1 6
7 PartACity 7 PartA ... 1 7
8 PartACity 8 PartA ... 1 8
9 PartACity 9 PartA ... 1 9
1 PartACity 10 PartA ... 1 10
[10 rows x 7 columns]
>>> del df['temp_index']
Create a new user-defined function (UDF) and apply it to allocate the available quantity per location, with the smaller indexes being allocated first as per your question:
>>> def allocate_qty(row):
global temp_df
try:
temp_df = temp_df[(temp_df['QTYLeft'] != 0)]
avail_qty = temp_df['QTYOnHand'].values[0]
avail_location = temp_df['Location'].values[0]
temp_df['QTYLeft'].values[0] = temp_df['QTYLeft'].values[0] - row['QTYRequested']
return avail_location, avail_qty
except:
return 'Not Allocated', 0
>>> df['Location'], df['QTYOnHand'] = zip(*df.apply(allocate_qty, axis=1))
>>> print(df)
ID Part ... QTYOnHand QTYRequested
0 PartACity 1 PartA ... 2 1
2 PartACity 2 PartA ... 2 1
3 PartACity 3 PartA ... 3 1
4 PartACity 4 PartA ... 3 1
5 PartACity 5 PartA ... 3 1
6 PartACity 6 PartA ... 4 1
7 PartACity 7 PartA ... 4 1
8 PartACity 8 PartA ... 4 1
9 PartACity 9 PartA ... 4 1
1 PartACity 10 PartA ... 0 1
[10 rows x 6 columns]
Filter out rows which did not manage to be allocated the resources:
>>> df = df[(df['Location'] != 'Not Allocated')]
>>> print(df)
ID Part ... QTYOnHand QTYRequested
0 PartACity 1 PartA ... 2 1
2 PartACity 2 PartA ... 2 1
3 PartACity 3 PartA ... 3 1
4 PartACity 4 PartA ... 3 1
5 PartACity 5 PartA ... 3 1
6 PartACity 6 PartA ... 4 1
7 PartACity 7 PartA ... 4 1
8 PartACity 8 PartA ... 4 1
9 PartACity 9 PartA ... 4 1
[9 rows x 6 columns]
Hope this helps!
Upvotes: 1