Reputation: 147
I am creating a Neural Network using this example and I am getting the error "ValueError: could not broadcast input array from shape (11253,1)" into shape (11253), in the line : trainPredictPlot[look_back:len(trainPredict)+look_back] = trainPredicty
My code is:
import csv
import math
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
import datetime
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
X1 = [1:16801] #16,800 values
Y1 = [1:16801]#16,800 values
train_size = int(len(X1) * 0.67)
test_size = len(X1) - train_size
train, test = X1[0:train_size,], X1[train_size:len(X1),]
def Data(X1, look_back=1):
dataX, dataY = [], []
for i in range(len(X1)-look_back-1):
a = X1[i:(i+look_back), 0]
dataX.append(a)
dataY.append(Y1[i + look_back, 0])
return numpy.array(dataX), numpy.array(dataY)
look_back = 1
trainX, testX = Data(train, look_back)
testX, testY = Data(test, look_back)
look_back = 1
trainX, testX = Data(train, look_back)
testX, testY = Data(test, look_back)
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
trainPredictPlot = numpy.empty_like(Y1)
trainPredictPlot[look_back:len(trainPredict)+look_back] = trainPredict
testPredictPlot = numpy.empty_like(Y1)
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(X1)-1] = testPredict
I have 16,800 values for X1 which look like:
[0.03454225 0.02062136 0.00186715 ... 0.92857565 0.64930691 0.20325924]
And my Y1 data looks like:
[ 2.25226244 1.44078451 0.99174488 ... 12.8397099 9.75722427 7.98525797]
My traceback error message is:
ValueError Traceback (most recent call last)
<ipython-input-9-e4da8990335b> in <module>()
116 trainPredictPlot = numpy.empty_like(Y1)
117
--> 118 trainPredictPlot[look_back:len(trainPredict)+look_back] = trainPredict
119
120 testPredictPlot = numpy.empty_like(Y1)
ValueError: could not broadcast input array from shape (11253,1) into shape (11253)
Upvotes: 1
Views: 1083
Reputation: 210822
Convert trainPredict
from 2D array to 1D vector before assigning:
trainPredictPlot[look_back:len(trainPredict)+look_back] = trainPredict.ravel()
Upvotes: 1