Reputation: 187
I did a rfm analysis using package "rfm". The results are in tibble and I can't seem to figure out how to export it to .csv. I tried argument below but it exported a blank file.
> dim(bmdata4RFM)
[1] 1182580 3
> str(bmdata4RFM)
'data.frame': 1182580 obs. of 3 variables:
$ customer_ID: num 0 0 0 0 0 0 0 0 0 0 ...
$ sales_date : Factor w/ 366 levels "1/1/2018 0:00:00",..: 267 275 286 297 300 301 302 303 304 305 ...
$ sales : num 101541 110543 60932 75472 43588 ...
> head(bmdata4RFM,5)
customer_ID sales_date sales
1 0 6/30/2017 0:00:00 101540.70
2 0 7/1/2017 0:00:00 110543.35
3 0 7/2/2017 0:00:00 60932.20
4 0 7/3/2017 0:00:00 75471.93
5 0 7/4/2017 0:00:00 43587.70
> library(rfm)
> # convert date from factor to date format
> bmdata4RFM[,2] <- as.Date(as.character(bmdata4RFM[,2]), format = "%m/%d/%Y")
> rfm_result_v2
# A tibble: 535,868 x 9
customer_id date_most_recent recency_days transaction_count amount recency_score frequency_score monetary_score rfm_score
<dbl> <date> <dbl> <dbl> <dbl> <int> <int> <int> <dbl>
1 0 2018-06-30 12 366 42462470. 5 5 5 555
2 1 2018-06-30 12 20 2264. 5 5 5 555
3 2 2018-01-12 181 24 1689 3 5 5 355
4 3 2018-05-04 69 27 1984. 4 5 5 455
5 6 2017-12-07 217 12 922. 2 5 5 255
6 7 2018-01-15 178 19 1680. 3 5 5 355
7 9 2018-01-05 188 19 2106 2 5 5 255
8 20 2018-04-11 92 4 414. 4 5 5 455
9 26 2018-02-10 152 1 72 3 1 2 312
10 48 2017-12-20 204 1 90 2 1 3 213
11 68 2017-09-30 285 1 37 1 1 1 111
12 70 2017-12-17 207 1 18 2 1 1 211
13 104 2017-08-11 335 1 90 1 1 3 113
14 120 2017-07-27 350 1 19 1 1 1 111
15 134 2018-01-13 180 1 275 3 1 4 314
16 153 2018-06-24 18 10 1677 5 5 5 555
17 155 2018-05-28 45 1 315 5 1 4 514
18 171 2018-06-11 31 6 3485. 5 5 5 555
19 172 2018-05-24 49 1 93 5 1 3 513
20 174 2018-06-06 36 3 347. 5 4 5 545
# ... with 535,858 more rows
> write.csv(rfm_result_v2,"bmdataRFMFunction_output071218v2.csv")
Upvotes: 18
Views: 42594
Reputation: 1505
OP asks for a CSV output.
Being very picky, write.table(rfm_result$rfm , file = "your_path\\df.csv")
creates a TSV.
If you want a CSV add the sep=","
parameter and also you'll likely want to not write out the row names so also use row.names=FALSE
.
write.table(rfm_result$rfm , file = "your_path\\df.csv", sep=",", row.names=FALSE)
Upvotes: 12
Reputation: 9485
The problem seems to be that the result of the rfm_table_order
is not only a tibble
: looking at this question already solved, and using its data, you can know this:
> class(rfm_result)
[1] "rfm_table_order" "tibble" "data.frame"
So if for example choose this:
> rfm_result$rfm
# A tibble: 325 x 9
customer_id date_most_recent recency_days transaction_count amount recency_score frequency_score monetary_score rfm_score
<int> <date> <dbl> <dbl> <int> <int> <int> <int> <dbl>
1 1 2017-08-06 353 1 145 4 1 2 412
2 2 2016-10-15 648 1 268 2 1 3 213
3 5 2016-12-14 588 1 119 3 1 1 311
4 7 2017-04-27 454 1 290 3 1 3 313
5 8 2016-12-07 595 3 835 2 5 5 255
6 10 2017-07-31 359 1 192 4 1 2 412
7 11 2017-08-16 343 1 278 4 1 3 413
8 12 2017-10-14 284 2 294 5 4 3 543
9 15 2016-07-12 743 1 206 2 1 2 212
10 17 2017-05-22 429 2 405 4 4 4 444
# ... with 315 more rows
You can export it with this command:
write.table(rfm_result$rfm , file = "your_path\\df.csv")
Upvotes: 13