Reputation: 61
I want to be able to border an array (really, an image file) with a set of random values. The numpy.pad()
function does not have any mode to do this. Is there a shorthand way to achieve this or would I have to create a function from scratch?
Upvotes: 3
Views: 1871
Reputation: 1135
I think you need to create a padding function yourself to pass to np.pad
.
This one pads with random integers.
def random_pad(vec, pad_width, *_, **__):
vec[:pad_width[0]] = np.random.randint(20, 30, size=pad_width[0])
vec[vec.size-pad_width[1]:] = np.random.randint(30,40, size=pad_width[1])
You can use this with np.pad like this:
In [13]: img = np.arange(12).reshape(3, 4)
In [14]: img
Out[14]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
In [15]: np.pad(img, ((2,3), (1,4)), mode=random_pad)
Out[15]:
array([[26, 21, 22, 24, 21, 37, 37, 37, 39],
[26, 25, 23, 29, 20, 39, 38, 30, 31],
[26, 0, 1, 2, 3, 37, 31, 32, 36],
[29, 4, 5, 6, 7, 30, 32, 33, 37],
[24, 8, 9, 10, 11, 33, 34, 33, 37],
[26, 36, 36, 36, 30, 32, 36, 38, 31],
[29, 33, 34, 38, 35, 31, 33, 37, 33],
[23, 37, 33, 33, 34, 32, 37, 33, 35]])
Upvotes: 2
Reputation: 40888
It may not be the most space-efficient, but one way to do this is to create a new array and place your existing array in the center of that.
>>> import numpy as np
>>> np.random.seed(444)
>>> arr = np.zeros((4, 5)) # your image array
>>> newsize = tuple(i + 2 for i in arr.shape)
>>> new = np.random.randint(low=0, high=50, size=newsize)
>>> new[1:-1, 1:-1] = arr
>>> new
array([[ 3, 48, 23, 8, 3, 39, 12],
[47, 0, 0, 0, 0, 0, 15],
[34, 0, 0, 0, 0, 0, 0],
[ 6, 0, 0, 0, 0, 0, 6],
[39, 0, 0, 0, 0, 0, 13],
[ 2, 15, 9, 34, 9, 24, 25]])
This is assuming your image is grayscale (2d) rather than a 3-dimensional MxNx4 RGBA array. In that case, you'd want new[1:-1, 1:-1, 1:-1]
.
You can also do this by passing a callable to np.pad()
, but there is a caveat (see below):
from functools import partial
def _pad_random(vector, pad_width, iaxis, kwargs, low, high):
a, b = np.random.randint(low, high, size=2)
vector[:pad_width[0]] = a
vector[-pad_width[1]:] = b
return vector
pad_random = partial(_pad_random, low=0, high=50)
Usage:
>>> np.pad(arr, 1, pad_random)
array([[23., 19., 6., 47., 17., 7., 26.],
[26., 0., 0., 0., 0., 0., 37.],
[39., 0., 0., 0., 0., 0., 39.],
[39., 0., 0., 0., 0., 0., 42.],
[28., 0., 0., 0., 0., 0., 47.],
[11., 32., 37., 2., 38., 30., 44.]])
Caveat: it looks like, when you pass a function to the mode
parameter of np.pad()
, this function is called multiple times. Here's an example straight from the docs with a few print calls sprinkled in:
>>> def pad_with(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... print(vector[:pad_width[0]])
... print(vector[-pad_width[1]:])
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
... return vector
...
>>> arr = np.arange(6).reshape(3, 2)
>>> np.pad(arr, 1, pad_with)
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[10]
[10]
[0]
[0]
[0]
[0]
[0]
[0]
[10]
[10]
array([[10, 10, 10, 10],
[10, 0, 1, 10],
[10, 2, 3, 10],
[10, 4, 5, 10],
[10, 10, 10, 10]])
So, as long as the images aren't too big, it may be much more time efficient to use the first approach above.
Upvotes: 1