Reputation: 1711
This tensorflow code is from this tutorial. I am wondering if there is a way to print the values at particular indexes of a tensor? For example in the session below can I print the value of row 1 column 1 of a the tensor y_
which should look something like [0,0,0,1,0,0,0,0,0]?
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(10):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(y_))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
Upvotes: 0
Views: 282
Reputation: 2982
When running a placeholder
within a Session
, you must pass in the data to the placeholder by using the feed_dict
attribute of the method sess.run()
.
So by your question, to view the first row and column of the tensor y_
, adjust your code to: sess.run(y_[0:][0], feed_dict = {y_: batch_ys})
. The entire code block below should give you the results you expect:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), \
reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(10):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
print('Values of y\n{}'.format(sess.run(y_[0:][0], \
feed_dict = {y_: batch_ys})))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, \
y_: mnist.test.labels}))
sess.close()
Values of y
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
Values of y
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Values of y
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
Values of y
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
Values of y
[0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
Values of y
[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
Values of y
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
Values of y
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
Values of y
[0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
Values of y
[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
Upvotes: 0