Reputation: 563
I have implemented linear regression with gradient descent but it doesn't work when I need to get decreasing function or constant function.
It works for data like
x_train = np.array([30,60,70,100])
y_train= np.array([60,120,145,195])
where I need to get increasing function like here f(x_train) ≈ 2*x_train=y_train
or for data like
x_train = np.array([30,60,70,100])
y_train= np.array([30,60,70,100])
where is f(x_train)=x_train=y_train
, but it doesn't work for data like this
x_train = np.array([50,100,150,200])
y_train= np.array([150,100,50,0])
decreasing function f(x_train)=200-x_train=y_train
or for constant function f(x_train)=100=y_train
x_train = np.array([50,100,150,200])
y_train= np.array([100,100,100,100])
import numpy as np
import matplotlib.pyplot as plt
#doesnt work
#x_train = np.array([50,100,150,200])
#y_train= np.array([150,100,50,0])
#work
x_train = np.array([30,60,70,100])
y_train= np.array([60,120,145,195])
def model(x,w,b):
return x*w+b;
def cost(y,y_hat):
return np.sum((y-y_hat)**2)
learning_rate=0.000001
def trainning_round(x_train,y_train,w,b,learning_rate):
y_hat=model(x_train,w,b)
print(cost(y_train,y_hat))
w_gradient=-2*x_train.dot(y_train-y_hat)
b_gradient=-2*np.sum(y_train-y_hat)
w-=learning_rate*w_gradient
b-=learning_rate*b_gradient
return w,b
num_epoch=200
def train(X,Y):
w=0
b=0
#for plt
ar = np.arange(0, 200, 0.5)
def f(t):
return t*w+b
for i in range(num_epoch):
w,b=trainning_round(X,Y,w,b,learning_rate)
plt.plot(ar,f(ar))
plt.axis([0, 200, 0, 200])
plt.plot(X, Y, 'ro')
train(x_train,y_train)
plt.show()
I have tried some other algorithms but they didn't work. Thanks in advance
Upvotes: 0
Views: 232
Reputation: 623
You can use an adaptive learning rate:
def optimal_learning_rate(X,y,W):
grad = -np.matmul(X.T,y-np.matmul(X,W))/len(y)
hessian = np.matmul(X.T,X)
return np.matmul(grad.T,grad)/np.matmul(np.matmul(grad.T,hessian,grad)
This implementation is for a multidimensional X
Upvotes: 1
Reputation: 758
I modified some parts. It is important that you decide appropriate learning_rate and iteration epoch. That's some difficult. So we use a framework like tensorflow.
import numpy as np
import matplotlib.pyplot as plt
#doesnt work
x_train = np.array([50,100,150,200])
y_train= np.array([150,100,50,0])
#work
# x_train = np.array([30,60,70,100])
# y_train= np.array([60,120,145,195])
def model(x,w,b):
return x*w+b;
def cost(y,y_hat):
return np.sum((y-y_hat)**2)/y.size
learning_rate=0.0001
def trainning_round(x_train,y_train,w,b,learning_rate):
y_hat=model(x_train,w,b)
j = cost(y_train,y_hat)
# w_gradient=-2*x_train.dot(y_train-y_hat)
# b_gradient=-2*np.sum(y_train-y_hat)
w_gradient=x_train.dot(y_hat-y_train) / y_train.size
b_gradient=np.sum(y_hat-y_train) / y_train.size
print(w_gradient, b_gradient)
w=w-learning_rate*w_gradient
b=b-learning_rate*b_gradient
print(j, w,b)
return w,b
num_epoch=200000
def train(X,Y):
w=2.1
b=1.5
#for plt
ar = np.arange(0, 200, 0.5)
for i in range(num_epoch):
w,b=trainning_round(X,Y,w,b,learning_rate)
plt.plot(ar,model(ar, w, b))
plt.axis([0, 300, 0, 200])
plt.plot(X, Y, 'ro')
train(x_train,y_train)
plt.show()
Upvotes: 1