Reputation: 43
How to Fix this error? I tried visiting all the forums searching for answers to rectify this issue. There are 5 classes in train_set and test_Set.
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Convolution2D, MaxPooling2D, Flatten, Dense
classifier=Sequential()
#1st Convolution Layer
classifier.add(Convolution2D(32, 3, 3, input_shape=(64,64,3),activation="relu"))
#Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Flattening
classifier.add(Flatten())
classifier.add(Dense(output_dim = 128, activation = 'relu'))
classifier.add(Dense(output_dim = 64, activation = 'relu'))
classifier.add(Dense(output_dim = 1, activation = 'softmax'))
classifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
print(classifier.summary())
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set= train_datagen.flow_from_directory('flowers/train_set',
target_size=(64,64),
batch_size=32,
class_mode='categorical')
test_set= test_datagen.flow_from_directory('flowers/test_set',
target_size=(64,64),
batch_size=32,
class_mode='categorical')
classifier.fit_generator(training_set,
samples_per_epoch = 3000,
nb_epoch = 25,
validation_data = test_set,
nb_val_samples=1000)
Here i have attached the image of the error for review. error
Upvotes: 1
Views: 2878
Reputation: 5012
in your code , the following line is wrong
classifier.add(Dense(output_dim = 1, activation = 'softmax'))
change it to
classifier.add(Dense(output_dim = 5, activation = 'softmax'))
why?
its because, your final layer is of 5 dimension. How did i know that output dimension is 5? because, you used categorical_crossentropy
and also, it looks like the dataset's labels have 5 categories(based on the first line of the output in the image)
Upvotes: 5