Reputation: 1176
I'm trying to build a variable length sequence classification model using Keras with Tensorflow backend based off of Marcin's PS3 example here: https://stackoverflow.com/a/42635571/1203882
I'm getting an error:
ValueError: The shape of the input to "Flatten" is not fully defined (got (None, 1, 1, 32). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.
I tried putting an input shape on the Inception layer, but the error persists. How do I correct this?
To reproduce:
import numpy as np
import keras
from keras.utils import to_categorical
from keras.layers import TimeDistributed, Conv3D, Input, Flatten, Dense
from keras.applications.inception_v3 import InceptionV3
from random import randint
from keras.models import Model
HEIGHT = 224
WIDTH = 224
NDIMS = 3
NUM_CLASSES = 4
def input_generator():
while True:
nframes = randint(1,5)
label = randint(0,NUM_CLASSES-1)
x = np.random.random((nframes, HEIGHT, WIDTH, NDIMS))
x = np.expand_dims(x, axis=0)
y = keras.utils.to_categorical(label, num_classes=NUM_CLASSES)
yield (x, y)
def make_model():
layers = 32
inp = Input(shape=(None, HEIGHT, WIDTH, NDIMS))
cnn = InceptionV3(include_top=False, weights='imagenet')
# cnn = InceptionV3(include_top=False, weights='imagenet', input_shape=(HEIGHT, WIDTH, NDIMS)) # same result
td = TimeDistributed(cnn)(inp)
c3da = Conv3D(layers, 3,3,3)(td)
c3db = Conv3D(layers, 3,3,3)(c3da)
flat = Flatten()(c3db)
out = Dense(NUM_CLASSES, activation="softmax")(flat)
model = Model(input=(None, HEIGHT, WIDTH, NDIMS), output=out)
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
return model
if __name__ == '__main__':
model = make_model()
model.fit_generator(input_generator(), samples_per_epoch=5, nb_epoch=2, verbose=1)
Upvotes: 3
Views: 1390
Reputation: 11895
It is not possible to flatten a variable-length tensor. If that was possible, how would Keras know the number of input units to your last fully connected layer? The number of parameters of a model needs to be defined at graph creation time.
There are two possible solutions to your problem:
a) Fix the number of frames:
inp = Input(shape=(NFRAMES, HEIGHT, WIDTH, NDIMS))
b) Aggregate the frames' dimension prior to the flatten layer. For example:
from keras.layers import Lambda
import keras.backend as K
def make_model():
layers = 32
inp = Input(shape=(None, HEIGHT, WIDTH, NDIMS))
cnn = InceptionV3(include_top=False, weights='imagenet')
# cnn = InceptionV3(include_top=False, weights='imagenet', input_shape=(HEIGHT, WIDTH, NDIMS)) # same result
td = TimeDistributed(cnn)(inp)
c3da = Conv3D(layers, 3,3,3)(td)
c3db = Conv3D(layers, 3,3,3)(c3da)
aggregated = Lambda(lambda x: K.sum(x, axis=1))(c3db)
flat = Flatten()(aggregated)
out = Dense(NUM_CLASSES, activation="softmax")(flat)
model = Model(input=inp, output=out)
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
return model
NOTE 1: There might be better strategies to aggregate the frames' dimension.
NOTE 2: The input of keras.utils.to_categorical should be a list of labels:
y = keras.utils.to_categorical([label], num_classes=NUM_CLASSES)
Upvotes: 1