Reputation: 450
(This is an extension of this question)
Hi
I am trying to update lmplot with new data but unable to find a way to hook it up to existing figure/axes since they have their own. I have tried so far like this:
%matplotlib notebook
import matplotlib.animation as animation
import numpy as np
#fig, ax = plt.subplots(1,1,figsize=(5,4))
df = get_data()
g = sns.lmplot( x='Mean', y='Variance', data=df, fit_reg=False, hue='Size', legend=False, palette=cmap)
def get_data():
takeRandomSample(population, popSize, popVar)
current_elem = len(sampleStats)-1
current_size = sampleStats[current_elem][0]
current_mean = sampleStats[current_elem][1]
current_var = sampleStats[current_elem][2]
data = {'Size' : current_size, 'Mean' : current_mean, 'Variance' : current_var}
df = pd.DataFrame(data, index=[0])
return df
def prep_axes(g):
g.set(xlim=(0, 20), ylim=(0, 100), xticks=range(0,21))
ax = g.axes[0,0]
ax.axvline(x=popMean, color='#8c8ca0', ls='dashed')
ax.axhline(y=popVar, color='#8c8ca0', ls='dashed')
ax.set_title('Sample Statistics :{}'.format(i))
ax.set_facecolor(backgroundColour)
def animate(i):
df = get_data()
g = sns.lmplot( x='Mean', y='Variance', data=df, fit_reg=False, hue='Size', legend=False, palette=cmap)
prep_axes(g, i)
# initialize samples
sampleStats = []
plt.tight_layout()
ani = animation.FuncAnimation(g.fig, animate, frames = np.arange(1,100), interval=100)
Problems:
1. This just produces one static graph, because I Could not find a way to update existing g, and re plot on same g's figure, the lmsplot. animate function is creating new g
2. I had to initialize unnecessarily once to get g object to pass on g.fig to funcanimation which anyway did not help due to point 1 as well.
How do we animate using lmplot? I want to use this instead of regular matplotlib due to hue feature.
I tried using facetgrid directly as well (and pass on lmplot in g.map), but that did not help either.
Upvotes: 0
Views: 1719
Reputation: 40707
For the record, here is how you could animate an lmplot()
, provided you don't have any facets and you don't care about regressions:
import seaborn as sns; sns.set(color_codes=True)
tips = sns.load_dataset("tips")
g = sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips, fit_reg=False)
fig = g.fig
ax = g.axes[0,0]
scatters = [c for c in ax.collections if isinstance(c, matplotlib.collections.PathCollection)]
txt = ax.text(0.1,0.9,'frame=0', transform=ax.transAxes)
def animate(i):
for c in scatters:
# do whatever do get the new data to plot
x = np.random.random(size=(50,1))*50
y = np.random.random(size=(50,1))*10
xy = np.hstack([x,y])
# update PathCollection offsets
c.set_offsets(xy)
txt.set_text('frame={:d}'.format(i))
return scatters+[txt]
ani = matplotlib.animation.FuncAnimation(fig, animate, frames=10, blit=True)
However in this case, you can obtain almost exactly the same result, in a much more straightforward way, by not using lmplot altogether:
import seaborn as sns; sns.set(color_codes=True)
tips = sns.load_dataset("tips")
fig, ax = plt.subplots()
scatters = []
for g,d in tips.groupby('smoker'):
s = ax.scatter(x="total_bill", y="tip", data=tips, label=g)
scatters.append(s)
ax.legend(bbox_to_anchor=(1.,1.), loc=1)
txt = ax.text(0.1,0.9,'frame=0', transform=ax.transAxes)
def animate(i):
for c in scatters:
x = np.random.random(size=(50,1))*50
y = np.random.random(size=(50,1))*10
xy = np.hstack([x,y])
c.set_offsets(xy)
txt.set_text('frame={:d}'.format(i))
return scatters+[txt]
ani = matplotlib.animation.FuncAnimation(fig, animate, frames=10, blit=True)
From the code above, it is fairly simple to append new values to the previous data, instead of replacing all the points:
import seaborn as sns; sns.set(color_codes=True)
tips = sns.load_dataset("tips")
fig, ax = plt.subplots()
scatters = []
for g,d in tips.groupby('smoker'):
s = ax.scatter([], [], label=g)
scatters.append(s)
ax.legend(bbox_to_anchor=(1.,1.), loc=1)
txt = ax.text(0.1,0.9,'frame=0', transform=ax.transAxes)
ax.set_xlim((0,60))
ax.set_ylim((0,15))
def animate(i, df, x, y, hue):
new_data = df.sample(20) # get new data here
for c,(groupname,subgroup) in zip(scatters,new_data.groupby(hue)):
xy = c.get_offsets()
xy = np.append(xy,subgroup[[x,y]].values, axis=0)
c.set_offsets(xy)
txt.set_text('frame={:d}'.format(i))
return scatters+[txt]
ani = matplotlib.animation.FuncAnimation(fig, animate, fargs=(tips, "total_bill", "tip", 'smoker'), frames=10, blit=True)
Upvotes: 3