anthonya
anthonya

Reputation: 565

How to plot SVM decision boundary in sklearn Python?

Using SVM with sklearn library, I would like to plot the data with each labels representing its color. I don't want to color the points but filling area with colors.

I have now :

d_pred, d_train_std, d_test_std, l_train, l_test

d_pred are the labels predicted. I would plot d_pred with d_train_std with shape : (70000,2) where X-axis are the first column and Y-Axis the second column.

Thank you.

Upvotes: 10

Views: 40253

Answers (3)

Yagoobean
Yagoobean

Reputation: 11

Here's my code that does what @Christian Tuchez describes:

outputs = my_clf.predict(1_test)

hits = []
for i in range(outputs.size):
    if outputs[i] == 1:
        hits.append(i)  # save the index where it's 1

This saves the index of all the points that hit in the function (saved in the "hits" list). You can probably accomplish this without a loop, I just found it easiest for me.

Then to display just those points, you'd write something like this:

ax.scatter(1_test[hits[:], 0], 1_test[hits[:], 1], 1_test[hits[:], 2], c="cyan", s=2, edgecolor=None)

Upvotes: 0

Christian Tuchez
Christian Tuchez

Reputation: 19

It can be difficult to get the function in 3D. An easy way to get a visualization is to get a large amount of points that cover your point space and run them through your learned function (my_model.predict), keep the points that hit inside the function, and visualize them. The more you add the more defined the boundary will be.

Upvotes: 0

seralouk
seralouk

Reputation: 33117

You cannot visualize the decision surface for a lot of features. This is because the dimensions will be too many and there is no way to visualize an N-dimensional surface.

However, you can use 2 features and plot nice decision surfaces as follows.

I have also written an article about this here: https://towardsdatascience.com/support-vector-machines-svm-clearly-explained-a-python-tutorial-for-classification-problems-29c539f3ad8?source=friends_link&sk=80f72ab272550d76a0cc3730d7c8af35

Case 1: 2D plot for 2 features and using the iris dataset

from sklearn.svm import SVC
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets

iris = datasets.load_iris()
X = iris.data[:, :2]  # we only take the first two features.
y = iris.target

def make_meshgrid(x, y, h=.02):
    x_min, x_max = x.min() - 1, x.max() + 1
    y_min, y_max = y.min() - 1, y.max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    return xx, yy

def plot_contours(ax, clf, xx, yy, **params):
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    out = ax.contourf(xx, yy, Z, **params)
    return out

model = svm.SVC(kernel='linear')
clf = model.fit(X, y)

fig, ax = plt.subplots()
# title for the plots
title = ('Decision surface of linear SVC ')
# Set-up grid for plotting.
X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)

plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_ylabel('y label here')
ax.set_xlabel('x label here')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
ax.legend()
plt.show()

enter image description here

Case 2: 3D plot for 3 features and using the iris dataset

from sklearn.svm import SVC
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from mpl_toolkits.mplot3d import Axes3D

iris = datasets.load_iris()
X = iris.data[:, :3]  # we only take the first three features.
Y = iris.target

#make it binary classification problem
X = X[np.logical_or(Y==0,Y==1)]
Y = Y[np.logical_or(Y==0,Y==1)]

model = svm.SVC(kernel='linear')
clf = model.fit(X, Y)

# The equation of the separating plane is given by all x so that np.dot(svc.coef_[0], x) + b = 0.
# Solve for w3 (z)
z = lambda x,y: (-clf.intercept_[0]-clf.coef_[0][0]*x -clf.coef_[0][1]*y) / clf.coef_[0][2]

tmp = np.linspace(-5,5,30)
x,y = np.meshgrid(tmp,tmp)

fig = plt.figure()
ax  = fig.add_subplot(111, projection='3d')
ax.plot3D(X[Y==0,0], X[Y==0,1], X[Y==0,2],'ob')
ax.plot3D(X[Y==1,0], X[Y==1,1], X[Y==1,2],'sr')
ax.plot_surface(x, y, z(x,y))
ax.view_init(30, 60)
plt.show()

enter image description here

Upvotes: 15

Related Questions