Reputation: 13088
Using Tensorflow's Estimator API, at what point in the pipeline should I perform the data augmentation?
According to this official Tensorflow guide, one place to perform the data augmentation is in the input_fn
:
def parse_fn(example):
"Parse TFExample records and perform simple data augmentation."
example_fmt = {
"image": tf.FixedLengthFeature((), tf.string, ""),
"label": tf.FixedLengthFeature((), tf.int64, -1)
}
parsed = tf.parse_single_example(example, example_fmt)
image = tf.image.decode_image(parsed["image"])
# augments image using slice, reshape, resize_bilinear
# |
# |
# |
# v
image = _augment_helper(image)
return image, parsed["label"]
def input_fn():
files = tf.data.Dataset.list_files("/path/to/dataset/train-*.tfrecord")
dataset = files.interleave(tf.data.TFRecordDataset)
dataset = dataset.map(map_func=parse_fn)
# ...
return dataset
If I perform data augmentation inside input_fn
, does parse_fn
return a single example or a batch including the original input image + all of the augmented variants? If it should only return a single [augmented] example, how do I ensure that all images in the dataset are used in its un-augmented form, as well as all variants?
Upvotes: 3
Views: 1140
Reputation: 501
It will return single examples for every call you make to the parse_fn, then if you use the .batch() operation it will return a batch of parsed images
Upvotes: 0
Reputation: 1961
If you use iterators on your dataset, your _augment_helper function will be called with each iteration of the dataset across each block of data fed in ( as you are calling the parse_fn in dataset.map )
Change your code to
ds_iter = dataset.make_one_shot_iterator()
ds_iter = ds_iter.get_next()
return ds_iter
I've tested this with a simple augmentation function
def _augment_helper(image):
print(image.shape)
image = tf.image.random_brightness(image,255.0, 1)
image = tf.clip_by_value(image, 0.0, 255.0)
return image
Change 255.0 to whatever the maximum value is in your dataset, I used 255.0 as my example's data set was in 8 bit pixel values
Upvotes: 1