Reputation: 33
I have a dataframe with two columns: 'TotalCharges', and 'Churn' with 7043 rows. In 11 cells of column 'TotalCharges' I have a missing value. What I want is to create 10 categories of TotalCharges plus one category called "MissingValues", but I can't find a way to do it. My DataFrame looks like this:
TotalCharges Churn
0 29.85 No
1 1889.5 No
2 108.15 Yes
3 1840.75 No
4 151.65 Yes
5 820.5 Yes
6 1949.4 No
7 301.9 No
8 3046.05 Yes
9 3487.95 No
10 587.45 No
11 326.8 No
12 5681.1 No
13 5036.3 Yes
14 2686.05 No
15 7895.15 No
16 missing No
17 7382.25 No
18 528.35 Yes
.... ....
.... ....
and I want to get something like this:
TotalCharges Churn TotalChargesCategories
0 29.85 No (18.799, 84.61]
1 1889.5 No (947.38, 1400.55]
2 108.15 Yes (84.61, 267.37]
3 1840.75 No (1400.55, 2065.52]
4 151.65 Yes (84.61, 267.37]
5 820.5 Yes (552.82, 947.38]
6 1949.4 No (1400.55, 2065.52]
7 301.9 No (267.37, 552.82]
8 3046.05 Yes (2065.52, 3132.75]
9 3487.95 No (3132.75, 4471.44]
10 587.45 No (552.82, 947.38]
11 326.8 No (267.37, 552.82]
12 5681.1 No (4471.44, 5973.69]
13 5036.3 Yes (4471.44, 5973.69]
14 2686.05 No (2065.52, 3132.75]
15 7895.15 No (5973.69, 8684.8]
16 missing No MissingValues
17 7382.25 No (5973.69, 8684.8]
18 528.35 Yes (267.37, 552.82]
.... ....
.... ....
If there wouldn't be missing values it would be easy with this code:
width_bin = (pd.qcut(df.TotalCharges,10))
df = df.assign(TotalChargesCat=width_bin)
df
but since there is 11 missing values I have problems creating categories, and this code leads to error message:
TypeError: unsupported operand type(s) for -: 'str' and 'str'
Upvotes: 1
Views: 1403
Reputation: 51335
Simply force the missing
to NaN
(either by explicit replacement or by forcing to numeric dtype), and then use cut
as you had:
df['TotalChargesCategories'] = pd.cut(pd.to_numeric(df['TotalCharges'], errors='coerce'),10)
>>> df
TotalCharges Churn TotalChargesCategories
0 29.85 No (21.985, 816.38]
1 1889.5 No (1602.91, 2389.44]
2 108.15 Yes (21.985, 816.38]
3 1840.75 No (1602.91, 2389.44]
4 151.65 Yes (21.985, 816.38]
5 820.5 Yes (816.38, 1602.91]
6 1949.4 No (1602.91, 2389.44]
7 301.9 No (21.985, 816.38]
8 3046.05 Yes (2389.44, 3175.97]
9 3487.95 No (3175.97, 3962.5]
10 587.45 No (21.985, 816.38]
11 326.8 No (21.985, 816.38]
12 5681.1 No (5535.56, 6322.09]
13 5036.3 Yes (4749.03, 5535.56]
14 2686.05 No (2389.44, 3175.97]
15 7895.15 No (7108.62, 7895.15]
16 missing No NaN
17 7382.25 No (7108.62, 7895.15]
18 528.35 Yes (21.985, 816.38]
Upvotes: 2