Reputation: 11696
My Linux application needs to receive a single UDP flow with modestly-sized packets (~1 KB) at a rate on the order of ~600,000 packets per second. My current implementation is naive: it has a single thread that simply calls recv()
repeatedly, placing the received data in a queue to be processed by another thread. Therefore, the receiver thread is only in charge of pulling in the packets.
In some initial testing that I've done, I'm only able to receive between 200,000-300,000 packets per second before the thread reaches full utilization of its CPU core. This obviously isn't good enough to meet the goal of ~600,000 packets per second.
Ideally, I would find some way of distributing the packet reception load across multiple threads. In looking for a solution to the problem, I came across the SO_REUSEPORT
socket option, which allows multiple TCP/UDP threads to be bound to the same IP/port combination. At first, this seemed to be exactly what I wanted.
However, the article also points out this detail:
Incoming connections and datagrams are distributed to the server sockets using a hash based on the 4-tuple of the connection—that is, the peer IP address and port plus the local IP address and port. This means, for example, that if a client uses the same socket to send a series of datagrams to the server port, then those datagrams will all be directed to the same receiving server (as long as it continues to exist). This eases the task of conducting stateful conversations between the client and server.
Therefore, if I only have a single UDP flow, the above hashing implementation would yield all of the packets being directed to the same receiver thread, thwarting my attempt at parallelizing the work. Therefore, the question is: is there a way to receive a single flow of UDP packets from multiple threads, using SO_REUSEPORT
or some other mechanism?
Note that my application can handle reordering of packets; the protocol that the datagrams are formatted with contains sequencing information that I can use to reorder them properly afterward.
Upvotes: 9
Views: 1680
Reputation: 1141
If you didn't find the solution for last 3 years take a look at SO_ATTACH_REUSEPORT_CBPF
. We had exactly the same issue and we solved it by attaching simple BPF program which distributes datagrams randomly mod n.
Upvotes: 3