Reputation: 11673
I'm trying to adapt Deep Learning with Python section 5.3 Feature extraction with Data Augmentation to a 3-class problem with resnet50 (imagenet weights).
Full code at https://github.com/morenoh149/plantdisease
from keras import models
from keras import layers
from keras.applications.resnet50 import ResNet50
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
input_shape = (224, 224, 3)
target_size = (224, 224)
batch_size = 20
conv_base = ResNet50(weights='imagenet', input_shape=input_shape, include_top=False)
model = models.Sequential()
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(3, activation='softmax'))
conv_base.trainable = False
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'input/train',
target_size=target_size,
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
'input/validation',
target_size=target_size,
batch_size=batch_size,
class_mode='categorical')
model.compile(loss='categorical_crossentropy',
optimizer=optimizers.RMSprop(lr=2e-5),
metrics=['acc'])
history = model.fit_generator(
train_generator,
steps_per_epoch=96,
epochs=30,
verbose=2,
validation_data=validation_generator,
validation_steps=48)
Questions:
steps_per_epoch
and validation_steps
. What should these values be?
I have 3 classes, 1000 images each. I've split it 60/20/20 train/validation/test.UPDATE: This may be an issue with keras itself
Upvotes: 0
Views: 1920
Reputation: 7129
To answer your first question: steps_per_epoch
is the number of batches the training generator should yield before considering an epoch finished. If you have 600 training images with batch size 20, this would be 30 steps per epoch et cetera. validation_steps
applies the same logic to the validation data generator, be it at the end of each epoch.
In general, steps_per_epoch
is the size of your dataset divided by the batch size.
Upvotes: 0