Reputation: 29
def adf(ts):
# Determing rolling statistics
rolmean = pd.rolling_mean(ts, window=12)
rolstd = pd.rolling_std(ts, window=12)
#Plot rolling statistics:
orig = plt.plot(ts, color='blue',label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std')
plt.legend(loc='best')
plt.title('Rolling Mean & Standard Deviation')
plt.show(block=False)
# Calculate ADF factors
adftest = adfuller(ts, autolag='AIC')
adfoutput = pd.Series(adftest[0:4], index=['Test Statistic','p-value','# of Lags Used',
'Number of Observations Used'])
for key,value in adftest[4].items():
adfoutput['Critical Value (%s)'%key] = value
return adfoutput**
Above I created function which calculate MA window 5. But when I run following code i get error..
df['priceModLogMA12'] = pd.rolling_mean(df.priceModLog, window = 5)**
AttributeError: module 'pandas' has no attribute 'rolling_mean'
Upvotes: 2
Views: 391
Reputation: 517
I thought we should use
rolmean = ts.rolling(window=12).mean()
Instead of
rolmean = pd.rolling_mean(ts, window=12)
Since pd.rolling_mean is deprecated
EDIT
Just change
rolmean = pd.rolling_mean(ts, window=12)
rolstd = pd.rolling_std(ts, window=12)
To
rolmean = ts.rolling(window=12).mean()
rolstd = ts.rolling(window=12).std()
EDIT
If you are talking about this line change it from
df['priceModLogMA12'] = pd.rolling_mean(df.priceModLog, window = 5)
To
df['priceModLogMA12'] = df.priceModLog.rolling(window = 5).mean()
Upvotes: 2
Reputation: 639
rolling_mean is removed in pandas. Instead you should use pandas.DataFrame.rolling and then apply mean(). Take a look here. You can edit it like this:
ts.rolling(window=12).mean()
Upvotes: 1