Reputation: 1088
I have the following array:
a=[['A', 'B'],
['B', 'B'],
['B', 'C'],
['C', 'B'],
['B', 'A'],
['A', 'D'],
['D', 'D'],
['D', 'A'],
['A', 'B'],
['B', 'A'],
['A', 'D']]
I wish to make a transition probability matrix of this, such that I get:
[[P_AA,P_AB,P_AC,P_AD],
[P_BA,P_BB,P_BC,P_BD],
[P_CA,P_CB,P_CC,P_CD],
[P_DA,P_DB,P_DC,P_DD]]
(Above is for illustration), where P_AA
counts how many ["A","A"]
are in the array a and so on divided by P_AA+P_AB+P_AC+P_AD
. I have started by using the counter
from collections import Counter
Counter(tuple(x) for x in l)
which counts the elements of array correctly as:
Counter({('A', 'B'): 2,
('B', 'B'): 1,
('B', 'C'): 1,
('C', 'B'): 1,
('B', 'A'): 2,
('A', 'D'): 2,
('D', 'D'): 1,
('D', 'A'): 1})
So the matrix shall be,
[[0,2/5,0,2/5],[2/4,1/4,1/4,0],[0,1,0,0],[1/2,0,0,1/2]]
Upvotes: 1
Views: 1682
Reputation: 2656
If the number of elements is small, simply looping over all elements should be no problem:
import numpy as np
a = [['A', 'B'], ['B', 'B'], ['B', 'C'], ['C', 'B'], ['B', 'A'],
['A', 'D'], ['D', 'D'], ['D', 'A'] ['A', 'B'], ['B', 'A'], ['A', 'D']]
a = np.asarray(a)
elems = np.unique(a)
dim = len(elems)
P = np.zeros((dim, dim))
for j, x_in in enumerate(elems):
for k, x_out in enumerate(elems):
P[j,k] = (a == [x_in, x_out]).all(axis=1).sum()
if P[j,:].sum() > 0:
P[j,:] /= P[j,:].sum()
Output:
array([[0. , 0.5 , 0. , 0.5 ],
[0.5 , 0.25, 0.25, 0. ],
[0. , 1. , 0. , 0. ],
[0.5 , 0. , 0. , 0.5 ]])
But you could also use the counter with a pre-allocated transition matrix, map the elements to indices, assign the counts as values, and normalize (last two steps just like I did).
Upvotes: 1
Reputation: 15204
This is a problem that fits itertools
and Counter
perfectly. Take a look at the following1:
l = [['A', 'B'],
['B', 'B'],
['B', 'C'],
['C', 'B'],
['B', 'A'],
['A', 'D'],
['D', 'D'],
['D', 'A'],
['A', 'B'],
['B', 'A'],
['A', 'D']]
from collections import Counter
from itertools import product, groupby
unique_elements = set(x for y in l for x in y) # -> {'B', 'C', 'A', 'D'}
appearances = Counter(tuple(x) for x in l)
# generating all possible combinations to get the probabilities
all_combinations = sorted(list(product(unique_elements, unique_elements)))
# calculating and arranging the probabilities
table = []
for i, g in groupby(all_combinations, key=lambda x: x[0]):
g = list(g)
local_sum = sum(appearances.get(y, 0) for y in g)
table.append([appearances.get(x, 0) / local_sum for x in g])
# [[0.0, 0.5, 0.0, 0.5], [0.5, 0.25, 0.25, 0.0], [0.0, 1.0, 0.0, 0.0], [0.5, 0.0, 0.0, 0.5]]
1 I am assuming you have a mistake on the formulation of your question: "...where P_AA counts how many ["A","A"] are in the array a and so on divided by P_AA + P_AB + P_AC + P_AD...". You mean to divide with something else, right?
Upvotes: 0
Reputation: 2428
from collections import Counter
a = [['A', 'B'],
['B', 'B'],
['B', 'C'],
['C', 'B'],
['B', 'A'],
['A', 'D'],
['D', 'D'],
['D', 'A'],
['A', 'B'],
['B', 'A'],
['A', 'D']]
counts = Counter(map(tuple, a))
letters = 'ABCD'
p = []
for letter in letters:
d = sum(v for k, v in counts.items() if k[0] == letter)
p.append([counts.get((letter, x), 0) / d for x in letters])
print(p)
Output:
[[0.0, 0.5, 0.0, 0.5],
[0.5, 0.25, 0.25, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.5, 0.0, 0.0, 0.5]]
Upvotes: 1
Reputation: 57033
A pandas-based solution:
import pandas as pd
from collections import Counter
# Create a raw transition matrix
matrix = pd.Series(Counter(map(tuple, a))).unstack().fillna(0)
# Normalize the rows
matrix.divide(matrix.sum(axis=1),axis=0)
# A B C D
#A 0.0 0.50 0.00 0.5
#B 0.5 0.25 0.25 0.0
#C 0.0 1.00 0.00 0.0
#D 0.5 0.00 0.00 0.5
Upvotes: 5