Reputation: 524
I am using the following code to read only the line which have the text 3 16
in the text file.
data = readLines('data/1.txt')
word = paste(c("3", "16"), collapse = " ")
word
library(tidyverse)
data316 = grep(word, data, value = TRUE) %>%
as.data.frame()
output looks like this.
.
1 9.023200+4 2.300448+2 0 0 0 09040 3 16 1
2 -6.440430+6-6.440430+6 0 0 1 409040 3 16 2
3 40 2 9040 3 16 3
4 6.468430+6 0.000000+0 6.600000+6 1.842410-2 6.800000+6 7.644670-29040 3 16 4
5 7.000000+6 2.498850-1 7.200000+6 4.665000-1 7.400000+6 7.131000-19040 3 16 5
6 7.600000+6 9.584290-1 7.800000+6 1.185110+0 8.000000+6 1.376980+09040 3 16 6
7 8.500000+6 1.727940+0 9.000000+6 1.935280+0 9.500000+6 2.052600+09040 3 16 7
8 1.000000+7 2.117610+0 1.050000+7 2.161300+0 1.100000+7 2.186090+09040 3 16 8
9 1.150000+7 2.206630+0 1.200000+7 2.225060+0 1.250000+7 2.184630+09040 3 16 9
10 1.300000+7 2.057370+0 1.350000+7 1.813340+0 1.400000+7 1.537510+09040 3 16 10
11 1.450000+7 1.249570+0 1.500000+7 9.857581-1 1.600000+7 6.089410-19040 3 16 11
12 1.700000+7 4.387180-1 1.800000+7 3.558570-1 1.900000+7 3.203910-19040 3 16 12
13 2.000000+7 2.946310-1 2.100000+7 2.684380-1 2.200000+7 2.489610-19040 3 16 13
14 2.300000+7 2.335810-1 2.400000+7 2.203580-1 2.500000+7 2.085120-19040 3 16 14
15 2.600000+7 1.987450-1 2.700000+7 1.895320-1 2.800000+7 1.813270-19040 3 16 15
16 2.900000+7 1.747920-1 3.000000+7 1.689870-1 3.000000+7 0.000000+09040 3 16 16
17 2.000000+8 0.000000+0 9040 3 16 17
Now I need to split this into 10 columns. How to do this using regrex?
data316 = grep(word, data, value = TRUE) %>%
as.data.frame()%>%
extract(.,., into = paste("Col",1:10,sep="_"),
regex = "this need to be filled..")
I have tried to extract using regular expressions but failed.
Those 10 columns are explicit to decide. Any help???
Upvotes: 2
Views: 216
Reputation: 72758
As in comments suggested we can use read.fwf()
(i.e. apply the in section "Examples" of ?read.fwf
shown procedure by linking and unlinking a tempfile) row-wise in a function with lapply()
and bind them together. read.fwf()
reads a table with fixed widths format, so we must tell it in a vector which widhts we want. Since you want 10 columns we nest this into a second function that makes rownames (numbers) as a first column.
fun1 <- function(y) {
d <- do.call(rbind, lapply(y, function(x) {
ff <- tempfile()
cat(file=ff, as.character(x))
return(read.fwf(ff, widths=c(rep(11, 5), 15, 2, 3, 5), # vector of widths
colClasses="character")) # character to achieve desired output
unlink(ff)
}))
return(setNames(cbind(rownames(d), d), paste0("V", 1:10)))
}
Result
> fun1(data316)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 1 9.023200+4 2.300448+2 0 0 0 09040 3 16 1
2 2 -6.440430+6 -6.440430+6 0 0 1 409040 3 16 2
3 3 40 2 9040 3 16 3
4 4 6.468430+6 0.000000+0 6.600000+6 1.842410-2 6.800000+6 7.644670-29040 3 16 4
5 5 7.000000+6 2.498850-1 7.200000+6 4.665000-1 7.400000+6 7.131000-19040 3 16 5
6 6 7.600000+6 9.584290-1 7.800000+6 1.185110+0 8.000000+6 1.376980+09040 3 16 6
7 7 8.500000+6 1.727940+0 9.000000+6 1.935280+0 9.500000+6 2.052600+09040 3 16 7
8 8 1.000000+7 2.117610+0 1.050000+7 2.161300+0 1.100000+7 2.186090+09040 3 16 8
9 9 1.150000+7 2.206630+0 1.200000+7 2.225060+0 1.250000+7 2.184630+09040 3 16 9
10 10 1.300000+7 2.057370+0 1.350000+7 1.813340+0 1.400000+7 1.537510+09040 3 16 10
11 11 1.450000+7 1.249570+0 1.500000+7 9.857581-1 1.600000+7 6.089410-19040 3 16 11
12 12 1.700000+7 4.387180-1 1.800000+7 3.558570-1 1.900000+7 3.203910-19040 3 16 12
13 13 2.000000+7 2.946310-1 2.100000+7 2.684380-1 2.200000+7 2.489610-19040 3 16 13
14 14 2.300000+7 2.335810-1 2.400000+7 2.203580-1 2.500000+7 2.085120-19040 3 16 14
15 15 2.600000+7 1.987450-1 2.700000+7 1.895320-1 2.800000+7 1.813270-19040 3 16 15
16 16 2.900000+7 1.747920-1 3.000000+7 1.689870-1 3.000000+7 0.000000+09040 3 16 16
17 17 2.000000+8 0.000000+0 9040 3 16 17
However, the data are not yet numerical. (There also seemed to be a misinterpretation of the column with the "9040 "s.) Maybe you'll like it better this way. To achieve this, we could do the following.
fun2 <- function(x) {
d <- do.call(rbind, lapply(x, function(y) {
ff <- tempfile()
cat(file=ff, as.character(y), sep="\n")
return(read.fwf(ff, widths=c(rep(11, 6), 4, 2, 3, 5),
colClasses="character"))
unlink(ff)
}))
# coerce subset of dataframe to numerics
s <- d[, 1:6]
s <- do.call(cbind, lapply(s, function(z) {
# precede + and - with an e so that R can recognize number
z <- gsub("\\+", "e\\+", z)
z <- gsub("\\-", "e\\-", z)
s <- as.numeric(z)
}))
return(cbind(s, d[, 7:10]))
}
Yielding
> fun2(data316)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 9.023e+04 2.300e+02 0.00e+00 0.000e+00 0.00e+00 0.000e+00 9040 3 16 1
2 NA NA 0.00e+00 0.000e+00 1.00e+00 4.000e+01 9040 3 16 2
3 4.000e+01 2.000e+00 NA NA NA NA 9040 3 16 3
4 6.468e+06 0.000e+00 6.60e+06 1.842e-02 6.80e+06 7.645e-02 9040 3 16 4
5 7.000e+06 2.499e-01 7.20e+06 4.665e-01 7.40e+06 7.131e-01 9040 3 16 5
6 7.600e+06 9.584e-01 7.80e+06 1.185e+00 8.00e+06 1.377e+00 9040 3 16 6
7 8.500e+06 1.728e+00 9.00e+06 1.935e+00 9.50e+06 2.053e+00 9040 3 16 7
8 1.000e+07 2.118e+00 1.05e+07 2.161e+00 1.10e+07 2.186e+00 9040 3 16 8
9 1.150e+07 2.207e+00 1.20e+07 2.225e+00 1.25e+07 2.185e+00 9040 3 16 9
10 1.300e+07 2.057e+00 1.35e+07 1.813e+00 1.40e+07 1.538e+00 9040 3 16 10
11 1.450e+07 1.250e+00 1.50e+07 9.858e-01 1.60e+07 6.089e-01 9040 3 16 11
12 1.700e+07 4.387e-01 1.80e+07 3.559e-01 1.90e+07 3.204e-01 9040 3 16 12
13 2.000e+07 2.946e-01 2.10e+07 2.684e-01 2.20e+07 2.490e-01 9040 3 16 13
14 2.300e+07 2.336e-01 2.40e+07 2.204e-01 2.50e+07 2.085e-01 9040 3 16 14
15 2.600e+07 1.987e-01 2.70e+07 1.895e-01 2.80e+07 1.813e-01 9040 3 16 15
16 2.900e+07 1.748e-01 3.00e+07 1.690e-01 3.00e+07 0.000e+00 9040 3 16 16
17 2.000e+08 0.000e+00 NA NA NA NA 9040 3 16 17
Note: I ran options(scipen=-999, digits=4)
before to achieve this scientific output (reset to defaults with options(scipen=0, digits=7)
).
Data
data316 <- grep(paste(c("3", "16"), collapse=" "),
readLines("1.txt"), value = TRUE)
Note: "1.txt"
is linked in question.
Upvotes: 2