Reputation: 554
Suppose you are trying to multiply a floating-point number k
by a small integer constant n
(by small I mean -20 <= n <= 20
). The naive way of doing this is converting n
to a floating point number (which for the purposes of this question does not count towards the runtime) and executing a floating-point multiply. However, for n = 2
, it seems likely that k + k
is a faster way of computing it. At what n
does the multiply instruction become faster than repeated additions (plus an inversion at the end if n < 0
)?
Note that I am not particularly concerned about accuracy here; I am willing to allow unsound optimizations as long as they get roughly the right answer (i.e.: up to 1024 ULP error is probably fine).
I am writing OpenCL code, so I'm interested in the answer to this question in many computational contexts (x86-64, x86-64 + AVX256, GPUs).
I could benchmark this, but since I don't have a particular architecture in mind, I'd prefer a theoretical justification of the choice.
Upvotes: 3
Views: 1111
Reputation: 23428
According to AMD's OpenCL optimisation guide for GPUs, section 3.8.1 "Instruction Bandwidths", for single-precision floating point operands, addition, multiplication and 'MAD' (multiply-add) all have a throughput of 5 per cycle on GCN based GPUs. The same is true for 24-bit integers. Only once you move to 32-bit integers are multiplications much more expensive (1/cycle). Int-to-float conversions and vice versa are also comparatively slow (1/cycle), and unless you have a double-precision float capable model (mostly FirePro/Radeon Pro series or Quadro/Tesla from nvidia) operations on doubles are super slow (<1/cycle). Negation is typically "free" on GPUs - for example GCN has sign flags on instruction operands, so -(a + b)
compiles to one instruction after transforming to (-a) + (-b)
.
Nvidia GPUs tend to be a bit slower at integer operations, for floats it's a similar story to AMD's though: multiplications are just as fast as addition, and if you can combine them into MAD operations, you can double throughput. Intel's GPUs are quite different in other regards, but again they're very fast at FP multiplication and addition.
Basically, it's really hard to beat a GPU at floating-point multiplication, as that's essentially the one thing they're optimised for.
On the CPU it's typically more complicated - Agner Fog's optimisation resources and instruction tables are the place to go for the details. Note though that on many CPUs you'll pay a penalty for interpreting float data as integer and back because ALU and FPU are typically separate. (For example if you wanted to optimise multiplying floats by a power of 2 by performing an integer addition on their exponents. On x86, you can easily do this by operating on SSE or AVX registers using first float instructions, then integer ones, but it's generally not good for performance.)
Upvotes: 3