Reputation: 4864
Can Julia's ForwardDiff deal with closures? If not, it makes it not so very useful, but if yes, where did I go wrong below?
using ForwardDiff
function make_add(x)
foo = y::Vector -> y+x
return foo
end
zulu = make_add(17)
g = x-> ForwardDiff.gradient(zulu, x)
g([1, 2, 3])
MethodError: no method matching extract_gradient!
(::Type{ForwardDiff.Tag{##1#2{Int64},Int64}},
`::Array{Array{ForwardDiff.Dual{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3},1},1}, ::Array{ForwardDiff.Dual{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3},1})
Closest candidates are:
extract_gradient!(::Type{T}, ::AbstractArray, ::ForwardDiff.Dual) where T at /home/jrun/.julia/v0.6/ForwardDiff/src/gradient.jl:76
extract_gradient!(::Type{T}, ::AbstractArray, ::Real) where T at /home/jrun/.julia/v0.6/ForwardDiff/src/gradient.jl:75
extract_gradient!(::Type{T}, ::DiffResults.DiffResult, ::ForwardDiff.Dual) where T at /home/jrun/.julia/v0.6/ForwardDiff/src/gradient.jl:70
...
Stacktrace:
[1] gradient(::Function, ::Array{Int64,1}, ::ForwardDiff.GradientConfig{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3,Array{ForwardDiff.Dual{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3},1}}, ::Val{true}) at /home/jrun/.julia/v0.6/ForwardDiff/src/gradient.jl:17
[2] gradient(::Function, ::Array{Int64,1}, ::ForwardDiff.GradientConfig{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3,Array{ForwardDiff.Dual{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3},1}}) at /home/jrun/.julia/v0.6/ForwardDiff/src/gradient.jl:15
[3] (::##3#4)(::Array{Int64,1}) at ./In[8]:1`
EDIT In fact this has nothing to do with closures. Simply:
h = x-> ForwardDiff.gradient(x-> x+17.0, x)
bombs in exactly the same way
Upvotes: 2
Views: 570
Reputation: 69939
The documentation of ForwardDiff.gadient
states:
This method assumes that
isa(f(x), Real)
.
The problem is that your function returns a vector not a scalar, so you need to use jacobian
(which accepts arrays as return values):
julia> function make_add(x)
foo = y::Vector -> y .+ x
return foo
end
make_add (generic function with 1 method)
julia> zulu = make_add(17)
#27 (generic function with 1 method)
julia> g = x-> ForwardDiff.jacobian(zulu, x)
#29 (generic function with 1 method)
julia> g([1, 2, 3])
3×3 Array{Int64,2}:
1 0 0
0 1 0
0 0 1
Also note that I have added a dot before +
(so it reads y .+ x
), because on current release of Julia 1.0 you are not allowed to add a scalar to a vector without broadcasting.
Upvotes: 2
Reputation: 19152
gradient
is defined for arrays. Use derivative
on scalars.
Upvotes: 2