Reputation: 3145
Pandas: convert series of time YYYY-MM-DD hh:mm:ss.0 keeping the YYYY-MM-DD format only
python 3.6, pandas 0.19.0
timestamp
0 2013-01-14 21:19:42.0
1 2013-01-16 09:04:37.0
2 2013-03-20 12:50:49.0
3 2013-01-03 17:02:53.0
4 2013-04-13 16:44:20.0
I tried:
df['timestamp'] = df['timestamp'].dt.strftime('%Y-%m-%d')
`AttributeError: Can only use .dt accessor with datetimelike values.`
Any thoughts? Thank you!
Upvotes: 1
Views: 4445
Reputation: 71
Using the below shown method also helps to achieve the same.
df['timestamp'] = pd.to_datetime(df['timestamp']).dt.date
You can refer to the documentation provided in the below link as a handy guide for date time handling: https://pandas.pydata.org/pandas-docs/stable/api.html#datetimelike-properties
Upvotes: 1
Reputation: 6159
convert the series into datetime datatype and try,
df['timestamp'] = pd.to_datetime(df['timestamp']).dt.strftime('%Y-%m-%d')
Upvotes: 2
Reputation: 3253
it may satisfy your demand
df['timestamp'] = pd.to_datetime(df['timestamp']).dt.strftime('%Y-%m-%d')
Upvotes: 1