Reputation: 340
I saved an numpy array to an image as follows:
plt.imshow(xNext[0,:,:,0]) #xNext has shape (1,64,25,1)
print(xNext[0,:,:,0].shape) #outputs (64,25)
plt.savefig(os.path.join(root,filename)+'.png')
np.save(os.path.join(root,filename)+'.npy',xNext[0,:,:,0])
How can I obtain the same numpy array back from the .png saved image? Can you also please show me if I had saved as .jpg image?
I've tried the following and works with 3D array (v1) where resulting image close to the original numpy array produced image (original).
image = Image.open(imageFilename) #brings in as 3D array
box = (315,60,500,540)
image = image.crop(box)
image = image.resize((25,64)) #to correct to desired shape
arr = np.asarray(image)
plt.imshow(arr)
plt.savefig('v1.png')
plt.close()
However, when I convert the 3D array to 2D array, the resulting image is different (v1b and v1c).
arr2 = arr[:,:,0]
plt.imshow(arr2)
plt.savefig('v1b.png')
plt.close()
arr3 = np.dot(arr[...,:3],[0.299,0.587,0.11])
plt.imshow(arr3)
plt.savefig('v1c.png')
plt.close()
How can I convert the 3D to 2D correctly? Thanks for your help.
original, v1 (saved from 3D array)
v1b, v1c (saved from 2D arrays)
original (with original size)
Upvotes: 0
Views: 3328
Reputation: 61910
If your objective is to save a numpy array as an image, your approach have a problem. The function plt.savefig
saves an image of the plot, not the array. Also transforming an array into an image may carry some precision loss (when converting from float64
or float32
to uint16
). That been said, I suggest you use skimage and imageio:
import imageio
import numpy as np
from skimage import img_as_uint
data = np.load('0058_00086_brown_2_recording1.wav.npy')
print("original", data.shape)
img = img_as_uint(data)
imageio.imwrite('image.png', img)
load = imageio.imread('image.png')
print("image", load.shape)
This script loads the data you provided and prints the shape for verification
data = np.load('0058_00086_brown_2_recording1.wav.npy')
print("original", data.shape)
then it transform the data
to uint
, saves the image as png and loads it:
img = img_as_uint(data)
imageio.imwrite('image.png', img)
load = imageio.imread('image.png')
the output of the script is:
original (64, 25)
image (64, 25)
i.e. the image is loaded with the same shape that data. Some notes:
imageio.imwrite('image.jpg', img)
3.890e-06
(this can be verified using np.abs(img_as_float(load) - data).sum() / data.size
)Information about skimage and imageio can be found in the respectives websites. More on saving numpy arrays as images can be found in the following answers: [1], [2], [3] and [4].
Upvotes: 1
Reputation: 11
from scipy.misc import imread
image_data = imread('test.jpg').astype(np.float32)
This should give you the numpy array (I would suggest using imread from scipy)
Upvotes: 1