Reputation: 16064
I tried the following to row bind two Spark dataframes but I gave an error message
library(sparklyr)
library(dplyr)
sc <- spark_connect(master = "local")
iris_tbl <- copy_to(sc, iris)
iris_tbl1 <- copy_to(sc, iris, "iris1")
iris_tbl2 = bind_rows(iris_tbl, iris_tbl1)
What's the most efficient way to bind two Spark dataframes together?
Upvotes: 4
Views: 2679
Reputation: 330423
You can use dplyr::union_all
dplyr::union_all(iris_tbl1, iris_tbl1)
or sparklyr::sdf_bind_rows
:
sdf_bind_rows(
iris_tbl %>% select(-Sepal_Length),
iris_tbl1 %>% select(-Petal_Length)
)
You could also use Spark's own unionByName
if schemas are compatible, but the order of columns doesn't match.
sdf_union_by_name <- function(x, y) {
invoke(spark_dataframe(x), "unionByName", spark_dataframe(y)) %>%
sdf_register()
}
sdf_union_by_name(
iris_tbl %>% select(Sepal_Length, Petal_Length),
iris_tbl %>% select(Petal_Length, Sepal_Length)
)
Upvotes: 6