Reputation: 477
I want to create zeros in my dataframe for particular date ranges for selective columns. I am stuck at finding any efficient solution.
My code creates a matrix of 1s. lets say dates=1/10/2016 - 16/8/2018 (i.e.ytd). matrix1cols=A,B,C,D:
df = pd.DataFrame(np.ones(shape=(len(dates), len(matrix1cols))), index=dates)
df.columns = ['A','B','C', 'D']
Now, I wish to make the Q1 (jan-mar) dates for column A = 0, Q2 dates for B = 0, Q3 dates for C = 0 and Q4 dates for col D = 0, for all years, in df. (I am essentially creating flags for myself)
Ps- my date has many years, and I have simplified the dataset for purpose of ease.
Upvotes: 3
Views: 476
Reputation: 294488
dates = pd.date_range('2016/10/01', '2018/08/16', freq='M')
matrixcols = list('ABCD')
df = pd.DataFrame(np.ones((len(dates), len(matrixcols)), int), dates, matrixcols)
A B C D
2016-10-31 1 1 1 1
2016-11-30 1 1 1 1
2016-12-31 1 1 1 1
2017-01-31 1 1 1 1
2017-02-28 1 1 1 1
2017-03-31 1 1 1 1
2017-04-30 1 1 1 1
2017-05-31 1 1 1 1
2017-06-30 1 1 1 1
2017-07-31 1 1 1 1
2017-08-31 1 1 1 1
2017-09-30 1 1 1 1
2017-10-31 1 1 1 1
2017-11-30 1 1 1 1
2017-12-31 1 1 1 1
2018-01-31 1 1 1 1
2018-02-28 1 1 1 1
2018-03-31 1 1 1 1
2018-04-30 1 1 1 1
2018-05-31 1 1 1 1
2018-06-30 1 1 1 1
2018-07-31 1 1 1 1
Create a custom array that defines where to place zeros
i = np.array([
#A B C D
[1, 1, 0, 1], # Q1 -> Only column C is zero
[1, 0, 0, 0], # Q2 -> cols B, C, D are zero
[0, 0, 1, 1], # Q3 -> cols A, B are zero
[0, 1, 1, 0], # Q4 -> cols A, D are zero
])
q = df.index.quarter - 1
df * i[q]
A B C D
2016-10-31 0 1 1 0
2016-11-30 0 1 1 0
2016-12-31 0 1 1 0
2017-01-31 1 1 0 1
2017-02-28 1 1 0 1
2017-03-31 1 1 0 1
2017-04-30 1 0 0 0
2017-05-31 1 0 0 0
2017-06-30 1 0 0 0
2017-07-31 0 0 1 1
2017-08-31 0 0 1 1
2017-09-30 0 0 1 1
2017-10-31 0 1 1 0
2017-11-30 0 1 1 0
2017-12-31 0 1 1 0
2018-01-31 1 1 0 1
2018-02-28 1 1 0 1
2018-03-31 1 1 0 1
2018-04-30 1 0 0 0
2018-05-31 1 0 0 0
2018-06-30 1 0 0 0
2018-07-31 0 0 1 1
Another view to see that it is working for correct quarters.
i = np.array([
#A B C D
[1, 1, 0, 1], # Q1 -> Only column C is zero
[1, 0, 0, 0], # Q2 -> cols B, C, D are zero
[0, 0, 1, 1], # Q3 -> cols A, B are zero
[0, 1, 1, 0], # Q4 -> cols A, D are zero
])
q = df.index.quarter - 1
df.set_index(df.index.to_period('Q'), append=True).swaplevel(0, 1) * i[q]
A B C D
2016Q4 2016-10-31 0 1 1 0
2016-11-30 0 1 1 0
2016-12-31 0 1 1 0
2017Q1 2017-01-31 1 1 0 1
2017-02-28 1 1 0 1
2017-03-31 1 1 0 1
2017Q2 2017-04-30 1 0 0 0
2017-05-31 1 0 0 0
2017-06-30 1 0 0 0
2017Q3 2017-07-31 0 0 1 1
2017-08-31 0 0 1 1
2017-09-30 0 0 1 1
2017Q4 2017-10-31 0 1 1 0
2017-11-30 0 1 1 0
2017-12-31 0 1 1 0
2018Q1 2018-01-31 1 1 0 1
2018-02-28 1 1 0 1
2018-03-31 1 1 0 1
2018Q2 2018-04-30 1 0 0 0
2018-05-31 1 0 0 0
2018-06-30 1 0 0 0
2018Q3 2018-07-31 0 0 1 1
Upvotes: 2
Reputation: 164773
One solution is to use a simple for
loop. Take care to convert your index to datetime
as a preliminary step, e.g. via df.index = pd.to_datetime(df.index)
.
for q, col in enumerate(df, 1):
df.loc[df.index.quarter == q, col] = 0
Equivalently, in this case, but more verbose:
for q, col in zip(range(1, 5), df):
df.loc[df.index.quarter == q, col] = 0
Upvotes: 2