Reputation: 640
I have some data in a dataframe, and I would like to calculate the percentage change between the month
value. The problem is I have NA
in some entries and it throws of the calculation.
irm code price pct.change
1 201807 511130F075A04 4.6600 2.192982
2 201806 511130F075A04 4.5600 1.333333
3 201805 511130F075A04 4.5000 -13.461538
4 201804 511130F075A04 5.2000 NA
5 201803 511130F075A04 NA NA
6 201802 511130F075A04 4.9100 1.867220
7 201801 511130F075A04 4.8200 -5.304519
8 201712 511130F075A04 5.0900 2.414487
9 201711 511130F075A04 4.9700 -3.307393
10 201710 511130F075A04 5.1400 NA
11 201709 511130F075A04 NA NA
12 201708 511130F075A04 5.2900 2.918288
13 201707 511130F075A04 5.1400 66.553255
14 201706 511130F075A04 3.0861 -10.664351
15 201705 511130F075A04 3.4545 -7.241824
The problem is in row 4 and row 10 in the pct.change
column. They are NA
but I would like them to be calculated using the latest value of price
that is notNA
. The desired output would be (see rows 4 and 10):
irm code price pct.change
1 201807 511130F075A04 4.6600 2.192982
2 201806 511130F075A04 4.5600 1.333333
3 201805 511130F075A04 4.5000 -13.461538
**4 201804 511130F075A04 5.2000 5.906314**
5 201803 511130F075A04 NA NA
6 201802 511130F075A04 4.9100 1.867220
7 201801 511130F075A04 4.8200 -5.304519
8 201712 511130F075A04 5.0900 2.414487
9 201711 511130F075A04 4.9700 -3.307393
**10 201710 511130F075A04 5.1400 -2.835539**
11 201709 511130F075A04 NA NA
12 201708 511130F075A04 5.2900 2.918288
13 201707 511130F075A04 5.1400 66.553255
14 201706 511130F075A04 3.0861 -10.664351
15 201705 511130F075A04 3.4545 -7.241824
I had tried the standard (x/lead(x) - 1)*100
and several variations using (x/lag(which(!is.na(lead(x))
but I seem to be missing something. Is there a straightforward way to do it in base
or even dplyr
? I don't want to replace the NAs, I want to keep them.
Upvotes: 1
Views: 967
Reputation: 79208
in Base R you can decide to replace:
a = which(is.na(df$price))-1
transform(df,pct.change=replace(pct.change,a,100*(price[a]/price[a+2]-1)))
irm code price pct.change
1 201807 511130F075A04 4.6600 2.192982
2 201806 511130F075A04 4.5600 1.333333
3 201805 511130F075A04 4.5000 -13.461538
4 201804 511130F075A04 5.2000 5.906314
5 201803 511130F075A04 NA NA
6 201802 511130F075A04 4.9100 1.867220
7 201801 511130F075A04 4.8200 -5.304519
8 201712 511130F075A04 5.0900 2.414487
9 201711 511130F075A04 4.9700 -3.307393
10 201710 511130F075A04 5.1400 -2.835539
11 201709 511130F075A04 NA NA
12 201708 511130F075A04 5.2900 2.918288
13 201707 511130F075A04 5.1400 66.553255
14 201706 511130F075A04 3.0861 -10.664351
15 201705 511130F075A04 3.4545 -7.241824
Upvotes: 1
Reputation: 28675
@LAP's comment is probably the best way to do it. The syntax is a little better with data.table
library(data.table)
setDT(df)
df[!is.na(price), pct.change := 100*(price/shift(price, type = 'lead') - 1)]
# irm code price pct.change
# 1: 201807 511130F075A04 4.6600 2.192982
# 2: 201806 511130F075A04 4.5600 1.333333
# 3: 201805 511130F075A04 4.5000 -13.461538
# 4: 201804 511130F075A04 5.2000 5.906314
# 5: 201803 511130F075A04 NA NA
# 6: 201802 511130F075A04 4.9100 1.867220
# 7: 201801 511130F075A04 4.8200 -5.304519
# 8: 201712 511130F075A04 5.0900 2.414487
# 9: 201711 511130F075A04 4.9700 -3.307393
# 10: 201710 511130F075A04 5.1400 -2.835539
# 11: 201709 511130F075A04 NA NA
# 12: 201708 511130F075A04 5.2900 2.918288
# 13: 201707 511130F075A04 5.1400 66.553255
# 14: 201706 511130F075A04 3.0861 -10.664351
# 15: 201705 511130F075A04 3.4545 NA
Upvotes: 3