Reputation: 12582
In Unity, say you have a 3D object,
Of course, it's trivial to get the AABB, Unity has direct functions for that,
(You might have to "add up all the bounding boxes of the renderers" in the usual way, no issue.)
Now, for the Camera in question, as positioned, that AABB indeed covers a certain 2D bounding box ...
In fact ... is there some sort of built-in direct way to find that orange 2D box in Unity??
(Note that to do it manually you just make rays (or use world to screen space as Draco mentions, same) for the 8 points of the AABB; encapsulate those in 2D to make the orange box.)
I don't need a manual solution, I'm asking if the engine gives this somehow from the pipeline every frame?
Is there a call?
(Indeed, it would be even better to have this ...)
My feeling is that one or all of the
would surely know the orange box, and perhaps even the blue box inside the pipeline, right off the graphics card, just as it knows the AABB for a given mesh.
We know that Unity lets you tap the AABB 3D box instantly every frame for a given mesh: In fact does Unity give the "2D frustrum bound" as shown here?
Upvotes: 9
Views: 3576
Reputation: 1
refer to this
It needs the game object with skinnedMeshRenderer.
Camera camera = GetComponent();
SkinnedMeshRenderer skinnedMeshRenderer = target.GetComponent();
// Get the real time vertices
Mesh mesh = new Mesh();
skinnedMeshRenderer.BakeMesh(mesh);
Vector3[] vertices = mesh.vertices;
for (int i = 0; i < vertices.Length; i++)
{
// World space
vertices[i] = target.transform.TransformPoint(vertices[i]);
// GUI space
vertices[i] = camera.WorldToScreenPoint(vertices[i]);
vertices[i].y = Screen.height - vertices[i].y;
}
Vector3 min = vertices[0];
Vector3 max = vertices[0];
for (int i = 1; i < vertices.Length; i++)
{
min = Vector3.Min(min, vertices[i]);
max = Vector3.Max(max, vertices[i]);
}
Destroy(mesh);
// Construct a rect of the min and max positions
Rect r = Rect.MinMaxRect(min.x, min.y, max.x, max.y);
GUI.Box(r, "");
Upvotes: 0
Reputation: 730
Function GUI3dRectWithObject
will return the 3D bounding box of given GameObject on screen.
Function GUI2dRectWithObject
will return the 2D bounding box of given GameObject on screen.
public static Rect GUI3dRectWithObject(GameObject go)
{
Vector3 cen = go.GetComponent<Renderer>().bounds.center;
Vector3 ext = go.GetComponent<Renderer>().bounds.extents;
Vector2[] extentPoints = new Vector2[8]
{
WorldToGUIPoint(new Vector3(cen.x-ext.x, cen.y-ext.y, cen.z-ext.z)),
WorldToGUIPoint(new Vector3(cen.x+ext.x, cen.y-ext.y, cen.z-ext.z)),
WorldToGUIPoint(new Vector3(cen.x-ext.x, cen.y-ext.y, cen.z+ext.z)),
WorldToGUIPoint(new Vector3(cen.x+ext.x, cen.y-ext.y, cen.z+ext.z)),
WorldToGUIPoint(new Vector3(cen.x-ext.x, cen.y+ext.y, cen.z-ext.z)),
WorldToGUIPoint(new Vector3(cen.x+ext.x, cen.y+ext.y, cen.z-ext.z)),
WorldToGUIPoint(new Vector3(cen.x-ext.x, cen.y+ext.y, cen.z+ext.z)),
WorldToGUIPoint(new Vector3(cen.x+ext.x, cen.y+ext.y, cen.z+ext.z))
};
Vector2 min = extentPoints[0];
Vector2 max = extentPoints[0];
foreach (Vector2 v in extentPoints)
{
min = Vector2.Min(min, v);
max = Vector2.Max(max, v);
}
return new Rect(min.x, min.y, max.x - min.x, max.y - min.y);
}
public static Rect GUI2dRectWithObject(GameObject go)
{
Vector3[] vertices = go.GetComponent<MeshFilter>().mesh.vertices;
float x1 = float.MaxValue, y1 = float.MaxValue, x2 = 0.0f, y2 = 0.0f;
foreach (Vector3 vert in vertices)
{
Vector2 tmp = WorldToGUIPoint(go.transform.TransformPoint(vert));
if (tmp.x < x1) x1 = tmp.x;
if (tmp.x > x2) x2 = tmp.x;
if (tmp.y < y1) y1 = tmp.y;
if (tmp.y > y2) y2 = tmp.y;
}
Rect bbox = new Rect(x1, y1, x2 - x1, y2 - y1);
Debug.Log(bbox);
return bbox;
}
public static Vector2 WorldToGUIPoint(Vector3 world)
{
Vector2 screenPoint = Camera.main.WorldToScreenPoint(world);
screenPoint.y = (float)Screen.height - screenPoint.y;
return screenPoint;
}
Reference: Is there an easy way to get on-screen render size (bounds)?
Upvotes: 0
Reputation: 15941
However, finding the extremes yourself is really pretty easy. Getting the mesh's bounding box (the cuboid shown in the screenshot) is just how this is done, you're just doing it in a transformed space.
You may also wish to first perform a Gift Wrapping of the model first, and only deal with the resulting convex hull (as no points not part of the convex hull will ever be outside the bounds of the convex hull). If you intend to draw this screen space rectangle while the model moves, scales, or rotates on screen, and have to recompute the bounding box, then you'll want to do this and cache the result.
Note that this does not work if the model animates (e.g. if your humanoid stands up and does jumping jacks). Solving for the animated case is much more difficult, as you would have to treat every frame of every animation as part of the original mesh for the purposes of the convex hull solving (to insure that none of your animations ever move a part of the mesh outside the convex hull), increasing the complexity by a power.
Upvotes: 2