Reputation: 605
I've got a file with a list of expenses:
Sample:
date item out in
12/01/2017 PAGO FIBERTEL 668.5 0.0
12/01/2017 PAGO GAS NATURAL 2.32 0.0
10/02/2017 EXTRACCION TARJETA 1200.0 0.0
10/02/2017 CPA. STARBUCKS R. PE9A 105.0 0.0
10/02/2017 CPA. STARBUCKS R. PE9A 125.0 0.0
11/03/2017 EXTRACCION TARJETA 1200.0 0.0
11/03/2017 SALES 0.0 10000.0
I want to produce a plot where I can see how some items evolved during a year, each month. For example, i would filter the "item" column using "startbucks" as keyword, i would calculate monthly aggregates and would present that info like this:
Dec Jan Mar
Starbucks 0 0 230
There's a list of keywords that i take from json file, and that i would use to produce each row. However, I'm not able to do it with only one. I've tried several forms of groupby (with grouper and without), but I think I'm not getting it. This is the code I've got at the moment:
import pandas as pd
import matplotlib.pyplot as plt
import sys
import json
class Banca():
def __init__(self, name, csv_path, json_path):
self.name= name
self.df = pd.read_csv(csv_path)
with open(json_path) as j:
self.json = json.load(j)
def prepare(self):
#Add header
headers = ['fecha','concepto','in','out',"x"]
self.df.columns = headers
#fix data
self.df.fecha = pd.to_datetime(self.df.fecha)
#Here i'm testing, this doesnt work
g1=self.df.groupby(pd.Grouper(key='fecha', freq='M')['in'].sum())
print(g1.describe().to_string())
print(g1.head())
#g1.plot(y='out', style='.-', figsize=(15,4))
#plt.show()
#filter data
# some filter
def grafica(self):
#plot data
self.df.plot(x='fecha', y='out',style='.-', figsize=(15,4))
plt.show()
def test_df(self):
print(self.df.describe(include='all'))
def test_json(self):
for x,y in self.json.items():
print(x,y)
icbc = Banca("ICBC", sys.argv[1], sys.argv[2])
icbc.test_df()
icbc.prepare()
#icbc.grafica()
#icbc.test_json()
I'm writing this code as an exercise to learn data manipulation with pandas. I've learn quite a few articules but I've been stuck here for a while now. I'm thinking perhaps i'm not supposed to use groupby for this, but something else. Anyway, I appreciate any help.
Upvotes: 1
Views: 1253
Reputation: 863166
Use:
#convert column to datetimes if necessary
df['fecha'] = pd.to_datetime(df['fecha'], format='%d/%m/%Y')
print(df)
fecha concepto in out
0 2017-01-12 PAGO FIBERTEL 668.50 0.0
1 2017-01-12 PAGO GAS NATURAL 2.32 0.0
2 2017-02-10 EXTRACCION TARJETA 1200.00 0.0
3 2017-02-10 CPA. STARBUCKS R. PE9A 105.00 0.0
4 2017-02-10 CPA. STARBUCKS R. PE9A 125.00 0.0
5 2017-03-11 EXTRACCION TARJETA 1200.00 0.0
6 2017-03-11 SALES 0.00 10000.0
import re
#create DatetimeIndex
df = df.set_index('fecha')
#list of values
L = ['starbuck','pago']
all_s = []
for x in L:
#filter by substrings, select column in
s = df.loc[df['concepto'].str.contains(x, flags=re.I), 'in']
#aggregate by months and sum
s = s.groupby(pd.Grouper(freq='M')).sum()
#change format of index by `MM-YYYY`
s.index = s.index.strftime('%b-%Y')
all_s.append(s.rename(x))
#join all Series together and transpose
df = pd.concat(all_s, axis=1).T
print (df)
Feb-2017 Jan-2017
starbuck 230.0 NaN
pago NaN 670.82
EDIT:
For ploting should be better plot DatetimeIndex
and columns by keywords, also group by MS
for start of months and add asfreq
if want add missing months filled by 0
:
df['fecha'] = pd.to_datetime(df['fecha'], format='%d/%m/%Y')
print(df)
fecha concepto in out
0 2017-01-12 PAGO FIBERTEL 668.50 0.0
1 2017-01-12 PAGO GAS NATURAL 2.32 0.0
2 2017-02-10 EXTRACCION TARJETA 1200.00 0.0
3 2017-02-10 CPA. STARBUCKS R. PE9A 105.00 0.0
4 2017-02-10 CPA. STARBUCKS R. PE9A 125.00 0.0
5 2017-03-11 EXTRACCION TARJETA 1200.00 0.0
6 2017-05-11 SALES 20.00 10000.0 <-changed last month
import re
df = df.set_index('fecha')
L = ['starbuck','pago', 'sales']
all_s = []
for x in L:
s = df.loc[df['concepto'].str.contains(x, flags=re.I), 'in']
s = s.groupby(pd.Grouper(freq='MS')).sum()
all_s.append(s.rename(x))
df = pd.concat(all_s, axis=1).fillna(0).asfreq('MS', fill_value=0)
print (df)
starbuck pago sales
fecha
2017-01-01 0.0 670.82 0.0
2017-02-01 230.0 0.00 0.0
2017-03-01 0.0 0.00 0.0
2017-04-01 0.0 0.00 0.0
2017-05-01 0.0 0.00 20.0
df.plot(style='.-', figsize=(15,4))
Upvotes: 1