Reputation: 341
I don't know how to explain exactly. But let's go to an example:
I have this dictionaries
dictData = {'movie_id':[11,12,13],'title':['filmA','filmB','filmC']}
dictFilm = {'filmA': ['pathA1\\ImageA1.jpg','pathA2\\ImageA2.jpg'],
'filmB': ['pathB1\\ImageB1.jpg','pathB2\\ImageB2.jpg'],
'filmC':['pathC1\\ImageC1.png','']}
And from these, I will make a new data
dfData = pd.DataFrame.from_dict(dictData)
dfFilm = pd.DataFrame.from_dict(dictFilm)
to_image_df = pd.DataFrame.from_dict({})
for i, row in dfFilm.iterrows():
to_image_df.at[i,'movie_id'] = int(dfData.at[i,'movie_id'])
to_image_df.at[i,'name'] = dfData.at[i,'title']
to_image_df.at[i,'path'] = dfFilm.at[i,'filmB']
print(to_image_df.head())
This gives me this result:
movie_id name path
0 11.0 filmA pathB1\B1.jpg
1 12.0 filmB pathB2\ImageB2.jpg
but I want result like this:
movie_id name path
0 11.0 filmA pathA1\\ImageA1.jpg
1 11.0 filmA pathA2\\ImageA2.jpg
2 12.0 filmB pathB2\ImageB1.jpg
3 12.0 filmB pathB2\ImageB2.jpg
4 13.0 filmC pathC1\ImageC1.png
Upvotes: 2
Views: 43
Reputation: 323236
Using melt
with merge
dfFilm = dfFilm.melt().loc[lambda x : x['value']!='']
df = dfData.merge(dfFilm,left_on='title',right_on='variable',how='right').drop('variable',1)
df
Out[277]:
movie_id title value
0 11 filmA pathA1\ImageA1.jpg
1 11 filmA pathA2\ImageA2.jpg
2 12 filmB pathB1\ImageB1.jpg
3 12 filmB pathB2\ImageB2.jpg
4 13 filmC pathC1\ImageC1.png
Upvotes: 2
Reputation: 402513
map
and flatten/expand.
df = pd.DataFrame(dictData)
v = df.title.map(dictFilm)
df = (pd.DataFrame(df.values.repeat(v.str.len(), axis=0), columns=df.columns)
.assign(path=list(chain.from_iterable(v)))
.replace('', np.nan)
.dropna(subset=['path']))
df
movie_id title path
0 11 filmA pathA1\ImageA1.jpg
1 11 filmA pathA2\ImageA2.jpg
2 12 filmB pathB1\ImageB1.jpg
3 12 filmB pathB2\ImageB2.jpg
4 13 filmC pathC1\ImageC1.png
Upvotes: 2