Reputation: 111
I am trying to get some sample from a given distribution, in fact, it is a 3-parameter Pareto distribution. Here are the codes:
from scipy.stats import gamma, rv_continuous
class pareto3_pdf(rv_continuous):
def _pdf(self,x,alpha,lambd,k):
return (gamma(alpha + k) * lambd**alpha * x**(k - 1)) / (gamma(alpha) * gamma(k) * (lambd + x)**(alpha + k))
pareto3 = pareto3_pdf(name="pareto")
x = pareto3.rvs(alpha = 3,lambd = 4,k = 2)
print(x)
and the output: TypeError: unsupported operand type(s) for *: 'rv_frozen' and 'int'
I am not quite sure how to fix this. If anyone has any suggestion it would be appreciated.
Thank you in advance.
edit:
I have now changed the code, but it keeps giving negative values.
import scipy.stats as stats
from scipy.stats import rv_continuous
from scipy.special import gamma
class pareto3_pdf(rv_continuous):
def _pdf(self,x,alpha,lambd,k):
return (gamma(alpha + k) * lambd**alpha * x**(k - 1)) / (gamma(alpha) * gamma(k) * (lambd + x)**(alpha + k))
pareto3 = pareto3_pdf(name="pareto")
pare3 = pareto3.rvs(alpha = 5,lambd = 4,k = 2)
print(pare3)
and if I try to simplify this into a 2-parameter model, OverflowError: (34, 'Result too large')
error popup.
import scipy.stats as stats
from scipy.stats import rv_continuous
from scipy.special import gamma
class pareto2_pdf(rv_continuous):
def _pdf(self,x,alpha,lambd):
return (alpha * lambd**alpha / (lambd + x)**(alpha + 1))
pareto2 = pareto2_pdf(name="pareto2")
pare2 = pareto2.rvs(alpha = 2,lambd = 2)
print(pare2)
Upvotes: 1
Views: 1502
Reputation:
As I wrote elsewhere your distribution is available in SciPy as betaprime(k, alpha, scale=lamda)
, so sampling it is built-in. A little test:
from scipy.stats import betaprime
alpha, lamda, k = 5, 4, 2
sample = betaprime.rvs(k, alpha, scale=lamda, size=1000)
print(sample.mean())
print(betaprime.mean(k, alpha, scale=lamda))
prints
2.0134570579012108
2.0
Close enough. (Of course, the mean of a random sample is random.)
Upvotes: 0
Reputation: 141
You have to import gamma from scipy.special instead of scipy.stats.
The reason is that scipy.stats.gamma is distribution and scipy.special.gamma is the gamma function.
from scipy.stats import rv_continuous
from scipy.special import gamma
class pareto3_pdf(rv_continuous):
def _pdf(self,x,alpha,lambd,k):
return (gamma(alpha + k) * lambd**alpha * x**(k - 1)) /(gamma(alpha) * gamma(k) * (lambd + x)**(alpha + k))
pareto3 = pareto3_pdf(name="pareto")
x = pareto3.rvs(alpha = 3,lambd = 4,k = 2)
Upvotes: 5