Reputation: 861
I have a csv with data shaped like this :
0,0;1,0;2,0;3,0;4,0;6,0;8,0;9,1
4,0;2,1;2,0;1,0;1,0;0,1;3,0;1,0;"BC"
4,0;2,1;2,0;1,0;1,0;0,1;4,0;1,0;"BC"
4,0;2,1;2,0;1,0;1,0;0,1;5,0;1,0;"BC"
4,0;2,1;2,0;1,0;1,0;0,1;6,0;1,0;"BC"
I want to convert it into a dataframe with the last column named "value". I already wrote this code in Scala :
val rawdf = spark.read.format("csv")
.option("header", "true")
.option("delimiter", ";")
.load(CSVPATH)
But I get this result with a rawdf.show(numRows = 4)
:
+---+---+---+---+---+---+---+---+
|0,0|1,0|2,0|3,0|4,0|6,0|8,0|9,1|
+---+---+---+---+---+---+---+---+
|4,0|2,1|2,0|1,0|1,0|0,1|3,0|1,0|
|4,0|2,1|2,0|1,0|1,0|0,1|4,0|1,0|
|4,0|2,1|2,0|1,0|1,0|0,1|5,0|1,0|
|4,0|2,1|2,0|1,0|1,0|0,1|6,0|1,0|
+---+---+---+---+---+---+---+---+
How can I add the last column on spark? Should I just write it on the csv file?
Upvotes: 1
Views: 4269
Reputation: 6363
Here's a way to do it without changing the CSV file, you set the schema in your code:
val schema = StructType(
Array(
StructField("0,0", StringType),
StructField("1,0", StringType),
StructField("2,0", StringType),
StructField("3,0", StringType),
StructField("4,0", StringType),
StructField("6,0", StringType),
StructField("8,0", StringType),
StructField("9,1", StringType),
StructField("X", StringType)
)
)
val rawdf =
spark.read.format("csv")
.option("header", "true")
.option("delimiter", ";")
.schema(schema)
.load("tmp.csv")
Upvotes: 4
Reputation: 41957
If you don't know the length of lines of data then you can read it as rdd
, do some parsings and then create a schema to form a dataframe
as below
//read the data as rdd and split the lines
val rddData = spark.sparkContext.textFile(CSVPATH)
.map(_.split(";", -1))
//getting the max length from data and creating the schema
val maxlength = rddData.map(x => (x, x.length)).map(_._2).max
val schema = StructType((1 to maxlength).map(x => StructField(s"col_${x}", StringType, true)))
//parsing the data with the maxlength and populating null where no data and using the schema to form dataframe
val rawdf = spark.createDataFrame(rddData.map(x => Row.fromSeq((0 to maxlength-1).map(index => Try(x(index)).getOrElse("null")))), schema)
rawdf.show(false)
which should give you
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|col_1|col_2|col_3|col_4|col_5|col_6|col_7|col_8|col_9|
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|0,0 |1,0 |2,0 |3,0 |4,0 |6,0 |8,0 |9,1 |null |
|4,0 |2,1 |2,0 |1,0 |1,0 |0,1 |3,0 |1,0 |"BC" |
|4,0 |2,1 |2,0 |1,0 |1,0 |0,1 |4,0 |1,0 |"BC" |
|4,0 |2,1 |2,0 |1,0 |1,0 |0,1 |5,0 |1,0 |"BC" |
|4,0 |2,1 |2,0 |1,0 |1,0 |0,1 |6,0 |1,0 |"BC" |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
I hope the answer is helpful
Upvotes: 0
Reputation: 1406
Spark tries to map the data columns based on available number of header columns that you have if you set :
.option("header", "true")
You can resolve this issue in one of the below 2 ways :
eg:
0,0;1,0;2,0;3,0;4,0;6,0;8,0;9,1;
4,0;2,1;2,0;1,0;1,0;0,1;3,0;1,0;"BC"
4,0;2,1;2,0;1,0;1,0;0,1;4,0;1,0;"BC"
4,0;2,1;2,0;1,0;1,0;0,1;5,0;1,0;"BC"
4,0;2,1;2,0;1,0;1,0;0,1;6,0;1,0;"BC"
OR
0,0;1,0;2,0;3,0;4,0;6,0;8,0;9,1;col_end
4,0;2,1;2,0;1,0;1,0;0,1;3,0;1,0;"BC"
4,0;2,1;2,0;1,0;1,0;0,1;4,0;1,0;"BC"
4,0;2,1;2,0;1,0;1,0;0,1;5,0;1,0;"BC"
4,0;2,1;2,0;1,0;1,0;0,1;6,0;1,0;"BC"
Upvotes: 0