Reputation: 689
Pipeline that was running perfectly fires an error when using dataflow. so I tried a simple pipeline and gets the same error.
The same pipeline will run with no issues on DirectRunner. The execution environment is a Google-datalab.
Please let me know if there is anything that I need to change / update in my environment or any other advice?
Many thanks, e
import apache_beam as beam
options = PipelineOptions()
google_cloud_options = options.view_as(GoogleCloudOptions)
google_cloud_options.project = 'PROJECT-ID'
google_cloud_options.job_name = 'try-debug'
google_cloud_options.staging_location = '%s/staging' % BUCKET_URL #'gs://archs4/staging'
google_cloud_options.temp_location = '%s/tmp' % BUCKET_URL #'gs://archs4/temp'
options.view_as(StandardOptions).runner = 'DataflowRunner'
p1 = beam.Pipeline(options=options)
(p1 | 'read' >> beam.io.ReadFromText('gs://dataflow-samples/shakespeare/kinglear.txt')
| 'write' >> beam.io.WriteToText('gs://bucket/test.txt', num_shards=1)
)
p1.run().wait_until_finish()
will fire the following error:
CalledProcessErrorTraceback (most recent call last)
<ipython-input-17-b4be63f7802f> in <module>()
5 )
6
----> 7 p1.run().wait_until_finish()
/usr/local/envs/py2env/lib/python2.7/site-packages/apache_beam/pipeline.pyc in run(self, test_runner_api)
174 finally:
175 shutil.rmtree(tmpdir)
--> 176 return self.runner.run(self)
177
178 def __enter__(self):
/usr/local/envs/py2env/lib/python2.7/site-packages/apache_beam/runners/dataflow/dataflow_runner.pyc in run(self, pipeline)
250 # Create the job
251 result = DataflowPipelineResult(
--> 252 self.dataflow_client.create_job(self.job), self)
253
254 self._metrics = DataflowMetrics(self.dataflow_client, result, self.job)
/usr/local/envs/py2env/lib/python2.7/site-packages/apache_beam/utils/retry.pyc in wrapper(*args, **kwargs)
166 while True:
167 try:
--> 168 return fun(*args, **kwargs)
169 except Exception as exn: # pylint: disable=broad-except
170 if not retry_filter(exn):
/usr/local/envs/py2env/lib/python2.7/site-packages/apache_beam/runners/dataflow/internal/apiclient.pyc in create_job(self, job)
423 def create_job(self, job):
424 """Creates job description. May stage and/or submit for remote execution."""
--> 425 self.create_job_description(job)
426
427 # Stage and submit the job when necessary
/usr/local/envs/py2env/lib/python2.7/site-packages/apache_beam/runners/dataflow/internal/apiclient.pyc in create_job_description(self, job)
446 """Creates a job described by the workflow proto."""
447 resources = dependency.stage_job_resources(
--> 448 job.options, file_copy=self._gcs_file_copy)
449 job.proto.environment = Environment(
450 packages=resources, options=job.options,
/usr/local/envs/py2env/lib/python2.7/site-packages/apache_beam/runners/dataflow/internal/dependency.pyc in stage_job_resources(options, file_copy, build_setup_args, temp_dir, populate_requirements_cache)
377 else:
378 sdk_remote_location = setup_options.sdk_location
--> 379 _stage_beam_sdk_tarball(sdk_remote_location, staged_path, temp_dir)
380 resources.append(names.DATAFLOW_SDK_TARBALL_FILE)
381 else:
/usr/local/envs/py2env/lib/python2.7/site-packages/apache_beam/runners/dataflow/internal/dependency.pyc in _stage_beam_sdk_tarball(sdk_remote_location, staged_path, temp_dir)
462 elif sdk_remote_location == 'pypi':
463 logging.info('Staging the SDK tarball from PyPI to %s', staged_path)
--> 464 _dependency_file_copy(_download_pypi_sdk_package(temp_dir), staged_path)
465 else:
466 raise RuntimeError(
/usr/local/envs/py2env/lib/python2.7/site-packages/apache_beam/runners/dataflow/internal/dependency.pyc in _download_pypi_sdk_package(temp_dir)
525 '--no-binary', ':all:', '--no-deps']
526 logging.info('Executing command: %s', cmd_args)
--> 527 processes.check_call(cmd_args)
528 zip_expected = os.path.join(
529 temp_dir, '%s-%s.zip' % (package_name, version))
/usr/local/envs/py2env/lib/python2.7/site-packages/apache_beam/utils/processes.pyc in check_call(*args, **kwargs)
42 if force_shell:
43 kwargs['shell'] = True
---> 44 return subprocess.check_call(*args, **kwargs)
45
46
/usr/local/envs/py2env/lib/python2.7/subprocess.pyc in check_call(*popenargs, **kwargs)
188 if cmd is None:
189 cmd = popenargs[0]
--> 190 raise CalledProcessError(retcode, cmd)
191 return 0
192
CalledProcessError: Command '['/usr/local/envs/py2env/bin/python', '-m', 'pip', 'install', '--download', '/tmp/tmpyyiizo', 'google-cloud-dataflow==2.0.0', '--no-binary', ':all:', '--no-deps']' returned non-zero exit status 2
Upvotes: 4
Views: 1950
Reputation: 7307
I was able to run your job with DataflowRunner
without any problem from a Jupyter notebook (not Datalab per se).
I am using the latest version (v2.6.0) of the apache_beam[gcp]
Python SDK, as of this writing. Could you retry with v2.6.0 instead of v2.0.0?
Here's what I ran:
import apache_beam as beam
from apache_beam.pipeline import PipelineOptions
from apache_beam.options.pipeline_options import GoogleCloudOptions
from apache_beam.options.pipeline_options import StandardOptions
BUCKET_URL = "gs://YOUR_BUCKET_HERE/test"
import os
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'PATH_TO_YOUR_SERVICE_ACCOUNT_JSON_CREDS'
options = PipelineOptions()
google_cloud_options = options.view_as(GoogleCloudOptions)
google_cloud_options.project = 'YOUR_PROJECT_ID_HERE'
google_cloud_options.job_name = 'try-debug'
google_cloud_options.staging_location = '%s/staging' % BUCKET_URL #'gs://archs4/staging'
google_cloud_options.temp_location = '%s/tmp' % BUCKET_URL #'gs://archs4/temp'
options.view_as(StandardOptions).runner = 'DataflowRunner'
p1 = beam.Pipeline(options=options)
(p1 | 'read' >> beam.io.ReadFromText('gs://dataflow-samples/shakespeare/kinglear.txt')
| 'write' >> beam.io.WriteToText('gs://bucket/test.txt', num_shards=1)
)
p1.run().wait_until_finish()
The job failed, as expected, because I don't have write access to 'gs://bucket/test.txt'
- you can also see this in the stacktrace at the bottom left of the screenshot. But, the job was successfully submitted to Google Cloud Dataflow, and it ran.
Upvotes: 2