Reputation: 3384
Ciao,
Here is a replicate able example.
df <- data.frame("STUDENT"=c(1,2,3,4,5),
"TEST1"=c(6,88,17,5,18),
"TEST2"=c(34,NA,87,88,82),
"TEST3"=c(87,62,13,8,71),
"TEST1NEW"=c(0,1,0,0,0),
"TEST2NEW"=c(0,NA,1,1,1),
"TEST3NEW"=c(1,1,0,0,1)
If I have data frame df with STUDENT, TEST1, TEST2, TEST3 I want to make TEST1NEW TEST2NEW and TEST3NEW such that the new variables are equal to 1 when old variable TEST is more than or equals to 50 and the NEW TEST variables should be equal to 0 when the old TEST variable is below 50. I made an attempt here below but this is insufficient and also I believe this may require a loop.
COLUMNS <- c("TEST1", "TEST2", "TEST3")
df[paste0(COLUMNS)] <- replace(df[COLUMNS],df[COLUMNS] < 50, 0 , 1, NA)
Upvotes: 1
Views: 402
Reputation: 26343
You could do
df[, paste0("TEST", 1:3, "_NEW")] <- as.integer(df[,-1] >= 50)
df
# STUDENT TEST1 TEST2 TEST3 TEST1_NEW TEST2_NEW TEST3_NEW
#1 1 6 34 87 0 0 1
#2 2 88 NA 62 1 NA 1
#3 3 17 87 13 0 1 0
#4 4 5 88 8 0 1 0
#5 5 18 82 71 0 1 1
data
df <- data.frame(
"STUDENT" = c(1, 2, 3, 4, 5),
"TEST1" = c(6, 88, 17, 5, 18),
"TEST2" = c(34, NA, 87, 88, 82),
"TEST3" = c(87, 62, 13, 8, 71)
)
In case where the assignment is more complex we can make use of dplyr::case_when
library(dplyr)
df[, paste0("TEST", 1:3, "_NEW")] <- case_when(df[,-1] < 20 ~ 4L,
df[,-1] >= 65 ~ 8L,
is.na(df[,-1]) ~ NA_integer_,
TRUE ~ 7L)
Upvotes: 2