Reputation: 3796
Using the for-loop below I can create a list of all managers above a given employee (essentially a list of an employee's manager, her manager's manager, etc.)
library(dplyr)
library(tidyr)
library(purrr)
# Create test data
ds <-
tibble(
emp_id = c("001", "002", "003", "004", "005"),
mgr_id = c("002", "004", "004", "005", NA)
)
# Hardcoded for-loop example
mgr_ids_above <- vector("list", length = 5)
id <- "001"
for (i in seq_along(mgr_ids_above)) {
mgr_ids_above[[i]] <- ds$mgr_id[ds$emp_id == id]
id <- mgr_ids_above[[i]]
}
# drop NAs
mgr_ids_above <- unlist(mgr_ids_above)
mgr_ids_above <- mgr_ids_above[!is.na(mgr_ids_above)]
# return to list format
as.list(mgr_ids_above)
My hope is to apply this for-loop to the entire data frame and save the results in a list-column. I can successfully do this using pmap()
to apply a hard-coded for-loop to my data frame, but when I try to write a generalized function, everything falls apart.
# Define custom function with hardcoded data and variable names
get_mgrs_above <- function(id, max_steps = 5){
mgr_ids_above <- vector("list", length = max_steps)
for (i in seq_along(mgr_ids_above)) {
mgr_ids_above[[i]] <- ds$mgr_id[ds$emp_id == id]
id <- mgr_ids_above[[i]]
}
# drop NAs
mgr_ids_above <- unlist(mgr_ids_above)
mgr_ids_above <- mgr_ids_above[!is.na(mgr_ids_above)]
# return to list format
as.list(mgr_ids_above)
}
# Apply custom function
ds_mgrs_above <-
ds %>%
mutate(
ranks_above = pmap(
list(id = emp_id),
get_mgrs_above
)
)
The output of the above code is
A tibble: 5 x 3
emp_id mgr_id ranks_above
<chr> <chr> <list>
1 001 002 <list [3]>
2 002 004 <list [2]>
3 003 004 <list [2]>
4 004 005 <list [1]>
5 005 NA <list [0]>
And the content of the ranks_above
list column look like
ds_mgrs_above$ranks_above[[1]]
[[1]]
[1] "002"
[[2]]
[1] "004"
[[3]]
[1] "005"
My failing function with all data and variables supplied as arguments fails with the message, "Error in mutate_impl(.data, dots) : Evaluation error: Element 1 has length 2, not 1 or 5..":
get_mgrs_above <- function(
data,
id = emp_id,
mgr_id = mgr_id,
emp_id = emp_id,
max_steps = 5){
mgr_ids_above <- vector("list", length = max_steps)
for (i in seq_along(mgr_ids_above)) {
mgr_ids_above[[i]] <- data$mgr_id[data$emp_id == id]
id <- mgr_ids_above[[i]]
}
# drop NAs
mgr_ids_above <- unlist(mgr_ids_above)
mgr_ids_above <- mgr_ids_above[!is.na(mgr_ids_above)]
# return to list format
as.list(mgr_ids_above)
}
ds %>%
mutate(
ranks_above = pmap(
list(
data = ds,
id = emp_id,
mgr_id = mgr_id,
emp_id = emp_id,
max_steps = 5
),
get_mgrs_above
)
)
To avoid confusion, this is a post about how to write a generalizable function that will create a list column from two columns. This is one component of a larger data munging attempt on a data frame with ~15k employees.
Upvotes: 1
Views: 160
Reputation: 1023
The way your loop was structured was confusing me so I changed it by using while
. This allows just an application of map
at the end.
get_mgrs_above <- function(id, data = NULL, max_steps = 5) {
stopifnot(!is.null(data))
mgr_ids_above <- list()
mgr <- id
iter <- 0
while (iter < max_steps & !is.na(mgr)) {
mgr <- data$mgr_id[data$emp_id == mgr]
if (!is.na(mgr)) {
mgr_ids_above <- append(mgr_ids_above, mgr)
}
iter <- iter + 1
}
return(mgr_ids_above)
}
ds$ranks_above <- map(ds$emp_id, get_mgrs_above, data = ds)
Upvotes: 1
Reputation: 15062
Here's my attempt at doing what I think you want. I couldn't figure out a way to adapt your code but I hope this approach makes sense. Basically you want to get the full command chain for each employee from a single table of employee ids and their direct manager's id. Here I make that table lookup
and repeatedly join it onto an input dataframe that is basically just the employee ids, a command_chain
list-col that I add each additional manager to, and a current_join
column that stores the id to be looked up in each iteration.
Then we can simply wrap the join_once
function in a join_all
which will keep calling it until we've reached the end of all the command chains (there are only NA
s). I cleaned up the output to discard the NAs and print the command chains as comma-separated strings so you can see what it's done.
To some extent I don't know if this is particularly efficient because you have to join a lot of variables that might not need it (e.g. here 004
is joined three more times than necessary) but it's at least conceptually simple I think.
library(tidyverse)
lookup <- tibble(
emp_id = c("001", "002", "003", "004", "005"),
mgr_id = c("002", "004", "004", "005", NA)
)
input <- lookup %>%
select(emp_id) %>%
mutate(command_chain = emp_id, current_join = emp_id)
join_once <- function(df) {
df %>%
left_join(lookup, by = c("current_join" = "emp_id")) %>%
mutate(
command_chain = map2(command_chain, mgr_id, ~ c(.x, .y)),
current_join = mgr_id
) %>%
select(-mgr_id)
}
join_all <- function(df) {
output <- df
while (!all(is.na(output$current_join))) {
output <- join_once(output)
}
return(output)
}
output <- join_all(input)
output %>%
mutate(
command_chain = map(command_chain, ~ discard(.x, is.na)),
cc_as_string = map_chr(command_chain, ~ str_c(.x, collapse = ","))
) %>%
select(-current_join)
#> # A tibble: 5 x 3
#> emp_id command_chain cc_as_string
#> <chr> <list> <chr>
#> 1 001 <chr [4]> 001,002,004,005
#> 2 002 <chr [3]> 002,004,005
#> 3 003 <chr [3]> 003,004,005
#> 4 004 <chr [2]> 004,005
#> 5 005 <chr [1]> 005
Created on 2018-08-22 by the reprex package (v0.2.0).
Upvotes: 1