Reputation: 4940
I have this network architecture:
model = Sequential()
model.add(Embedding(9761, 100, input_length=longest_period))
model.add(LSTM(30, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
When I try to fit the model:
res = model.fit(X_train_lsmt, np.array(y_train_lsmt), validation_split=0.25, epochs=2, batch_size=128, verbose=0)
I get this error:
ValueError: Error when checking model input: expected
embedding_3_input to have shape (None, 217) but got array
with shape (3133, 1)
I suppose that the error could be about the one-hot encoded y_train_lsmt
, having shape (3133,3)
[[ 0. 1. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]
...,
[ 1. 0. 0.]
[ 1. 0. 0.]
[ 0. 1. 0.]]
but I am not sure about this.
Update:
I have partially solved adding a Flatten()
layer:
model = Sequential()
model.add(Embedding(9761, 100, input_length=stringa_piu_lunga))
model.add(LSTM(units=10, return_sequences=True))
model.add(Flatten())
model.add(Dense(3, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
but now I get the same error during model evaluation:
score = model.evaluate(X_test_lsmt, y_train_lsmt, verbose=0)
Upvotes: 0
Views: 149
Reputation: 16607
Your code seems fine. Change your y_train_lstm
to categorical with:
y_train_lstm = keras.utils.to_categorical(y_train_lstm)
Or change your loss to sparse_categorical_entropy:
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
Edited: Based on your github repository, the evaluation not going to work because you did not preprocess the x_test_lstm
. Try:
X_test_lstm = sequence.pad_sequences(X_test_lstm, maxlen=longest_string)
Upvotes: 1