Reputation: 10061
I have a following dataframe:
df = pd.DataFrame({'scene':[{"living":"0.515","kitchen":"0.297"}, {"kitchen":"0.401","study":"0.005"}, {"study":"0.913"}, {}, {"others":"0"}], 'id':[1, 2, 3 ,4, 5]})
id scene
01 {"living":"0.515","kitchen":"0.297"}
02 {"kitchen":"0.401","study":"0.005"}
03 {"study":"0.913"}
04 {}
05 {"others":"0"}
and I want to create a new dataframe as shown below, can someone help me to create this using Pandas?
id living kitchen study others
01 0.515 0.297 0 0
02 0 0.401 0.005 0
03 0 0 0.913 0
04 0 0 0 0
05 0 0 0 0
Upvotes: 4
Views: 2422
Reputation: 10061
The perfect one line solution is here, thanks for all helps:
df.join(df['scene'].apply(json.loads).apply(pd.Series))
Upvotes: 0
Reputation: 10061
Updated. This one works perfectly. Welcome to give your suggestions to keep it more concise.
import json
import pandas as pd
df = pd.DataFrame({'scene':[{"living":"0.515","kitchen":"0.297"}, {"kitchen":"0.401","study":"0.005"}, {"study":"0.913"}, {}, {"others":"0"}], 'id':[1, 2, 3 ,4,5], 's':['a','b','c','d','e']})
def test(Scene, type):
Scene = json.loads(Scene)
if type in Scene.keys():
return Scene[type]
else:
return ""
a = ['living', 'kitchen', 'study', 'others']
for b in a:
df[b] = df['Scene'].map(lambda Scene: test(Scene, b.lower()))
cols = ['living', 'kitchen', 'study', 'others']
df[cols] = df[cols].replace({'': 0})
df[cols] = df[cols].apply(pd.to_numeric, errors='coerce', axis=1)
Upvotes: 0
Reputation: 917
On your data,
df = pd.DataFrame({'scene':[{"living":"0.515","kitchen":"0.297"}, {"kitchen":"0.401","study":"0.005"},
{"study":"0.913"}, {}, {"others":"0"}],
'id':[1, 2, 3 ,4,5], 's': ['a','b','c','d','e']})
df:
id s scene
0 1 a {'kitchen': '0.297', 'living': '0.515'}
1 2 b {'kitchen': '0.401', 'study': '0.005'}
2 3 c {'study': '0.913'}
3 4 d {}
4 5 e {'others': '0'}
There are two ways you can go about doing this,
In a single line, where you have to input all column names except 'scene' to set_index
function
df = df.set_index(['id', 's'])['scene'].apply(pd.Series).fillna(0).reset_index()
which will output:
id s kitchen living study others
0 1 a 0.297 0.515 0 0
1 2 b 0.401 0 0.005 0
2 3 c 0 0 0.913 0
3 4 d 0 0 0 0
4 5 e 0 0 0 0
In two lines, where you create your excepted result and concat it to the original dataframe.
df1 = df.scene.apply(pd.Series).fillna(0)
df = pd.concat([df, df1], axis=1)
which gives,
id s scene kitchen living study others
0 1 a {'kitchen': '0.297', 'living': '0.515'} 0.297 0.515 0 0
1 2 b {'kitchen': '0.401', 'study': '0.005'} 0.401 0 0.005 0
2 3 c {'study': '0.913'} 0 0 0.913 0
3 4 d {} 0 0 0 0
4 5 e {'others': '0'} 0 0 0 0
Upvotes: 2
Reputation: 2427
Simple solution is to convert your scene
column to the list of dictionaries and create new data frame with default constructor:
pd.DataFrame(df.scene.tolist()).fillna(0)
Result:
kitchen living others study
0 0.297 0.515 0 0
1 0.401 0 0 0.005
2 0 0 0 0.913
3 0 0 0 0
4 0 0 0 0
One of the "default" way to create DataFrame is to use a list of dictionaries. In this case each dictionary of list will be converted to the separate row and each key of dict will be used for the column heading.
Upvotes: 4