Reputation: 567
I have checked python non linear ODE with 2 variables , which is not my case. Maybe my case is not called as nonlinear ODE
, correct me please.
The question isFrenet Frame
actually, in which there are 3 vectors T(s), N(s) and B(s); the parameter s>=0. And there are 2 scalar with known math formula expression t(s) and k(s). I have the initial value T(0), N(0) and B(0).
diff(T(s), s) = k(s)*N(s)
diff(N(s), s) = -k(s)*T(s) + t(s)*B(s)
diff(B(s), s) = -t(s)*N(s)
Then how can I get T(s), N(s) and B(s) numerically or symbolically?
I have checked scipy.integrate.ode
but I don't know how to pass k(s)*N(s) into its first parameter at all
def model (z, tspan):
T = z[0]
N = z[1]
B = z[2]
dTds = k(s) * N # how to express function k(s)?
dNds = -k(s) * T + t(s) * B
dBds = -t(s)* N
return [dTds, dNds, dBds]
z = scipy.integrate.ode(model, [T0, N0, B0]
Upvotes: 1
Views: 885
Reputation: 567
I found that the equation I listed in the first post does not work for my curve. So I read Gray A., Abbena E., Salamon S-Modern Differential Geometry of Curves and Surfaces with Mathematica. 2006
and found that for arbitrary curve, Frenet equation should be written as
diff(T(s), s) = ||r'||* k(s)*N(s)
diff(N(s), s) = ||r'||*(-k(s)*T(s) + t(s)*B(s))
diff(B(s), s) = ||r'||* -t(s)*N(s)
where ||r'||
(or ||r'(s)||
) is diff([x(s), y(s), z(s)], s).norm()
now the problem has changed to be some different from that in the first post, because there is no r'(s) function or discrete data array. So I think this is suitable for a new reply other than comment.
I met 2 questions while trying to solve the new equation:
gaussian solution
, but the result is totally wrong.thanks again
import numpy as np
from scipy.integrate import cumtrapz
import matplotlib.pylab as plt
# Define the parameters as regular Python function:
def k(s):
return 1
def t(s):
return 0
def dZ(s, Z, r_norm):
return np.array([
r_norm * k(s) * Z[1],
r_norm*(-k(s) * Z[0] + t(s) * Z[2]),
r_norm*(-t(s)* Z[1])
])
T0, N0, B0 = np.array([1, 0, 0]), np.array([0, 1, 0]), np.array([0, 0, 1])
deltaS = 0.1 # step to calculate dZ/ds
num = int(2*np.pi*1/deltaS) + 1 # how many points on the curve we have to calculate
T = np.zeros([num, ], dtype=object)
N = np.zeros([num, ], dtype=object)
B = np.zeros([num, ], dtype=object)
R0 = N0
T[0] = T0
N[0] = N0
B[0] = B0
for i in range(num-1):
r_norm = np.linalg.norm(R0)
temp_dZ = dZ(i*deltaS, np.array([T[i], N[i], B[i]]), r_norm)
T[i+1] = T[i] + temp_dZ[0]*deltaS
T[i+1] = T[i+1]/np.linalg.norm(T[i+1])
N[i+1] = N[i] + temp_dZ[1]*deltaS
N[i+1] = N[i+1]/np.linalg.norm(N[i+1])
B[i+1] = B[i] + temp_dZ[2]*deltaS
B[i+1] = B[i+1]/np.linalg.norm(B[i+1])
R0 = R0 + T[i]*deltaS
coords = cumtrapz(
[
[i[0] for i in T], [i[1] for i in T], [i[2] for i in T]
]
, x=np.arange(num)*deltaS
)
plt.figure()
plt.plot(coords[0, :], coords[1, :]);
plt.axis('equal'); plt.xlabel('x'); plt.xlabel('y');
plt.show()
Upvotes: 0
Reputation: 567
thanks for your example. And I thought it again, found that since there is formula for dZ where Z is matrix(T, N, B), we can calculate Z[i] = Z[i-1] + dZ[i-1]*deltaS
according to the concept of derivative. Then I code and find this idea can solve the circle example. So
Z[i] = Z[i-1] + dZ[i-1]*deltaS
suitable for other ODE? will it fail in some situation, or does scipy.integrate.solve_ivp/scipy.integrate.ode supply advantage over the direct usage of Z[i] = Z[i-1] + dZ[i-1]*deltaS
?my answer to my question, at least it works for the circle
import numpy as np
from scipy.integrate import cumtrapz
import matplotlib.pylab as plt
# Define the parameters as regular Python function:
def k(s):
return 1
def t(s):
return 0
def dZ(s, Z):
return np.array(
[k(s) * Z[1], -k(s) * Z[0] + t(s) * Z[2], -t(s)* Z[1]]
)
T0, N0, B0 = np.array([1, 0, 0]), np.array([0, 1, 0]), np.array([0, 0, 1])
deltaS = 0.1 # step to calculate dZ/ds
num = int(2*np.pi*1/deltaS) + 1 # how many points on the curve we have to calculate
T = np.zeros([num, ], dtype=object)
N = np.zeros([num, ], dtype=object)
B = np.zeros([num, ], dtype=object)
T[0] = T0
N[0] = N0
B[0] = B0
for i in range(num-1):
temp_dZ = dZ(i*deltaS, np.array([T[i], N[i], B[i]]))
T[i+1] = T[i] + temp_dZ[0]*deltaS
T[i+1] = T[i+1]/np.linalg.norm(T[i+1]) # have to do this
N[i+1] = N[i] + temp_dZ[1]*deltaS
N[i+1] = N[i+1]/np.linalg.norm(N[i+1])
B[i+1] = B[i] + temp_dZ[2]*deltaS
B[i+1] = B[i+1]/np.linalg.norm(B[i+1])
coords = cumtrapz(
[
[i[0] for i in T], [i[1] for i in T], [i[2] for i in T]
]
, x=np.arange(num)*deltaS
)
plt.figure()
plt.plot(coords[0, :], coords[1, :]);
plt.axis('equal'); plt.xlabel('x'); plt.xlabel('y');
plt.show()
Upvotes: 0
Reputation: 4151
Here is a code using solve_ivp
interface from Scipy (instead of odeint
) to obtain a numerical solution:
import numpy as np
from scipy.integrate import solve_ivp
from scipy.integrate import cumtrapz
import matplotlib.pylab as plt
# Define the parameters as regular Python function:
def k(s):
return 1
def t(s):
return 0
# The equations: dz/dt = model(s, z):
def model(s, z):
T = z[:3] # z is a (9, ) shaped array, the concatenation of T, N and B
N = z[3:6]
B = z[6:]
dTds = k(s) * N
dNds = -k(s) * T + t(s) * B
dBds = -t(s)* N
return np.hstack([dTds, dNds, dBds])
T0, N0, B0 = [1, 0, 0], [0, 1, 0], [0, 0, 1]
z0 = np.hstack([T0, N0, B0])
s_span = (0, 6) # start and final "time"
t_eval = np.linspace(*s_span, 100) # define the number of point wanted in-between,
# It is not necessary as the solver automatically
# define the number of points.
# It is used here to obtain a relatively correct
# integration of the coordinates, see the graph
# Solve:
sol = solve_ivp(model, s_span, z0, t_eval=t_eval, method='RK45')
print(sol.message)
# >> The solver successfully reached the end of the integration interval.
# Unpack the solution:
T, N, B = np.split(sol.y, 3) # another way to unpack the z array
s = sol.t
# Bonus: integration of the normal vector in order to get the coordinates
# to plot the curve (there is certainly better way to do this)
coords = cumtrapz(T, x=s)
plt.plot(coords[0, :], coords[1, :]);
plt.axis('equal'); plt.xlabel('x'); plt.xlabel('y');
T, N and B are vectors. Therefore, there are 9 equations to solve: z
is a (9,) array.
For constant curvature and no torsion, the result is a circle:
Upvotes: 3