Reputation: 13
I need to covert hexadecimal string to binary then pass the bits into different variables.
For example, my input is: std::string hex = "E136";
How do I convert the string into binary output 1110 0001 0011 0110? After that I need to pass the bit 0 to variable A, bits 1-9 to variable B and bits 10-15 to variable C.
Thanks in advance
Upvotes: 0
Views: 1311
Reputation: 25526
How do I convert the string [...]?
Start with result value of null, then for each character (starting at first, indicating most significant one) determine its value (in range of [0:15]), multiply the so far received result by 16 and add the current value to. For your given example, this will result in
(((0 * 16 + v('E')) * 16 + v('1')) * 16 + v('3')) + v('6')
There are standard library functions doing the stuff for you, such as std::strtoul
:
char* end;
unsigned long value = strtoul(hex.c_str(), &end, 16);
// ^^ base!
The end pointer useful to check if you have read the entire string:
if(*char == 0)
{
// end of string reached
}
else
{
// some part of the string was left, you might consider this
// as error (could occur if e. g. "f10s12" was passed, then
// end would point to the 's')
}
If you don't care for end checking, you can just pass nullptr
instead.
Don't convert back to a string afterwards, you can get the required values by masking (&
) and bitshifting (>>
), e. g getting bits [1-9]:
uint32_t b = value >> 1 & 0x1ffU;
Working on integrals is much more efficient than working on strings. Only when you want to print out the final result, then convert back to string (if using a std::ostream
, operator<<
already does the work for you...).
Upvotes: 1
Reputation: 20141
While playing with this sample, I realized that I gave a wrong recommendation:
std::setbase(2)
does not work by standard. Ouch! (SO: Why doesn't std::setbase(2) switch to binary output?)
For conversion of numbers to string with binary digits, something else must be used. I made this small sample. Though, the separation of bits is considered as well, my main focus was on output with different bases (and IMHO worth another answer):
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <string>
std::string bits(unsigned value, unsigned w)
{
std::string text;
for (unsigned i = 0; i < w || value; ++i) {
text += '0' + (value & 1); // bit -> character '0' or '1'
value >>= 1; // shift right one bit
}
// text is right to left -> must be reversed
std::reverse(text.begin(), text.end());
// done
return text;
}
void print(const char *name, unsigned value)
{
std::cout
<< name << ": "
// decimal output
<< std::setbase(10) << std::setw(5) << value
<< " = "
// binary output
#if 0 // OLD, WRONG:
// std::setbase(2) is not supported by standard - Ouch!
<< "0b" << std::setw(16) << std::setfill('0') << std::setbase(2) << value
#else // NEW:
<< "0b" << bits(value, 16)
#endif // 0
<< " = "
// hexadecimal output
<< "0x" << std::setw(4) << std::setfill('0') << std::setbase(16) << value
<< '\n';
}
int main()
{
std::string hex = "E136";
unsigned value = strtoul(hex.c_str(), nullptr, 16);
print("hex", value);
// bit 0 -> a
unsigned a = value & 0x0001;
// bit 1 ... 9 -> b
unsigned b = (value & 0x03FE) >> 1;
// bit 10 ... 15 -> c
unsigned c = (value & 0xFC00) >> 10;
// report
print(" a ", a);
print(" b ", b);
print(" c ", c);
// done
return 0;
}
Output:
hex: 57654 = 0b1110000100110110 = 0xe136
a : 00000 = 0b0000000000000000 = 0x0000
b : 00155 = 0b0000000010011011 = 0x009b
c : 00056 = 0b0000000000111000 = 0x0038
Concerning, the bit operations:
binary bitwise and operator (&
) is used to set all unintended bits to 0. The second value can be understood as mask. It would be more obvious if I had used binary numbers but this is not supported in C++. Hex codes do nearly as well as a hex digit represents always the same pattern of 4 bits. (as 16 = 24) After some time of practice, you usually learn to "see" the bits in the hex code.
About the right shift (>>
), I was not quite sure. OP didn't require that bits have to be moved somewhere – only that they had to be separated into distinct variables. So, these right-shift's might be obsolete.
So, this question which seemed to be trivial leaded to a surprising enlightment (for me).
Upvotes: 0