Reputation: 7899
When I try to serialize a model using MLeap using the following code:
import mleap.pyspark
from mleap.pyspark.spark_support import SimpleSparkSerializer
# Import standard PySpark Transformers and packages
from pyspark.ml.feature import VectorAssembler, StandardScaler, OneHotEncoder, StringIndexer
from pyspark.ml import Pipeline, PipelineModel
from pyspark.sql import Row
# Create a test data frame
l = [('Alice', 1), ('Bob', 2)]
rdd = sc.parallelize(l)
Person = Row('name', 'age')
person = rdd.map(lambda r: Person(*r))
df2 = spark.createDataFrame(person)
df2.collect()
# Build a very simple pipeline using two transformers
string_indexer = StringIndexer(inputCol='name', outputCol='name_string_index')
feature_assembler = VectorAssembler(inputCols=[string_indexer.getOutputCol()], outputCol="features")
feature_pipeline = [string_indexer, feature_assembler]
featurePipeline = Pipeline(stages=feature_pipeline)
fittedPipeline = featurePipeline.fit(df2)
# serialize the model:
fittedPipeline.serializeToBundle("jar:file:/tmp/pyspark.example.zip", fittedPipeline.transform(df2))
However I get the following error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-2-98a49e4cd023> in <module>()
----> 1 fittedPipeline.serializeToBundle("jar:file:/tmp/pyspark.example.zip", fittedPipeline.transform(df2))
/opt/anaconda2/envs/py345/lib/python3.4/site-packages/mleap/pyspark/spark_support.py in serializeToBundle(self, path, dataset)
22
23 def serializeToBundle(self, path, dataset=None):
---> 24 serializer = SimpleSparkSerializer()
25 serializer.serializeToBundle(self, path, dataset=dataset)
26
/opt/anaconda2/envs/py345/lib/python3.4/site-packages/mleap/pyspark/spark_support.py in __init__(self)
37 def __init__(self):
38 super(SimpleSparkSerializer, self).__init__()
---> 39 self._java_obj = _jvm().ml.combust.mleap.spark.SimpleSparkSerializer()
40
41 def serializeToBundle(self, transformer, path, dataset):
TypeError: 'JavaPackage' object is not callable
Please assist?
Upvotes: 3
Views: 2651
Reputation: 5124
The answer of @Tshilidzi Madau is correct - what you need to do is to add mleap-spark
jar into your spark classpath.
One option in pyspark is to set the spark.jars.packages
config while creating the SparkSession
:
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.config('spark.jars.packages', 'ml.combust.mleap:mleap-spark_2.12:0.19.0') \
.config("spark.jars.excludes", "net.sourceforge.f2j:arpack_combined_all") \ # this exclude is needed as this lib seems not to be available in public maven repos
.getOrCreate()
I tested it with Spark 3.0.3
and mleap 0.19.0
Upvotes: 1
Reputation: 7899
I managed to fix this problem by downloading and pointing to the missing jar files on the spark submit script. For my case, I had installed MLeap 0.8.1 and was using Spark2 built on Scalar11, so I downloaded the following jar files from MvnRepository:
Then I also pointed to this jar files using the --jar
flag on my spark submit file as follows (I also pointed to the maven repository using the --repository
flag):
export PYSPARK_SUBMIT_ARGS='--master yarn --deploy-mode client --driver-memory 40g --num-executors 15 --executor-memory 30g --executor-cores 5 --packages ml.combust.mleap:mleap-runtime_2.11:0.8.1 --repositories http://YOUR MAVEN REPO/ --jars arpack_combined_all-0.1.jar,mleap-base_2.11-0.8.1.jar,mleap-core_2.11-0.8.1.jar,mleap-runtime_2.11-0.8.1.jar,mleap-spark_2.11-0.8.1.jar,mleap-spark-base_2.11-0.8.1.jar,mleap-tensor_2.11-0.8.1.jar pyspark-shell'
jupyter notebook --no-browser --ip=$(hostname -f)
Upvotes: 4