Reputation: 71
Here is a very small subset of my dataframe. Original dataframe is very large
df = pd.DataFrame({
'XX_111':[-14,-90,-90,-96,-91,-5,-98,-74,-96,-45,-11,-54,-45],
'YY_222':[-103,0,-110,-114,-114,-113,-114,-115,-113,-111,-112,-122,-113],
'ZZ_111':[1,2,3,5,6,6,7,7,4,8,9,2,6],
'value':[1,1,2,3,3,1,2,2,2,3,3,1,1]
})
You see that the values under column 'value' are always in the order 1,2,3. What I want is to create a new column 'id' and fill it like this;
value id
1 1
1 1
2 1
3 1
3 1
1 2
2 2
2 2
2 2
3 2
3 2
1 3
1 3
So everytime the value changed from 3 to 1, I want it to increment the id by 1. Is there a way to accomplish this and also efficiently?
Upvotes: 0
Views: 95
Reputation: 76917
I'd use
In [166]: df['id'] = (df.value.shift().eq(3) & df.value.eq(1)).cumsum() + 1
In [167]: df
Out[167]:
XX_111 YY_222 ZZ_111 value id
0 -14 -103 1 1 1
1 -90 0 2 1 1
2 -90 -110 3 2 1
3 -96 -114 5 3 1
4 -91 -114 6 3 1
5 -5 -113 6 1 2
6 -98 -114 7 2 2
7 -74 -115 7 2 2
8 -96 -113 4 2 2
9 -45 -111 8 3 2
10 -11 -112 9 3 2
11 -54 -122 2 1 3
12 -45 -113 6 1 3
Note: Don't use diff
if you have any number pairs with difference 2. For example 5, 3, x and so on.
Upvotes: 2
Reputation: 153460
Use:
df['id'] = df['value'].diff().eq(-2).cumsum() + 1
Output:
XX_111 YY_222 ZZ_111 value id
0 -14 -103 1 1 1
1 -90 0 2 1 1
2 -90 -110 3 2 1
3 -96 -114 5 3 1
4 -91 -114 6 3 1
5 -5 -113 6 1 2
6 -98 -114 7 2 2
7 -74 -115 7 2 2
8 -96 -113 4 2 2
9 -45 -111 8 3 2
10 -11 -112 9 3 2
11 -54 -122 2 1 3
12 -45 -113 6 1 3
Upvotes: 3