Reputation: 25
I am learning time series analysis with R and came across these 2 functions while learning. I do understand that the output of both of these is a periodic data defined by the frequency of period and the only difference I can see is the OHLC output option in the to.period().
Other than the OHLC when a particular of these functions is to be used?
Upvotes: 1
Views: 197
Reputation: 23598
to.period
and all the to.minutes, to.weekly, to.quarterly are indeed meant for OHLC data.
If you take the function to.period
it will take the open from the first day of the period, the close of the last day of the period and the highest high / lowest low of the specified period. These functions work very well together with the quantmod / tidyquant / quantstrat packages. See code example 1.
If you give the to.period non-OHLC data, but a timeseries with 1 data column, you still get a sort of OHLC back. See code example 2.
Now period.apply
is is more interesting. Here you can supply your own functions to be applied on the data. Especially in combination with endpoints this can be a powerful function in timeseries data if you want to aggregate your function to different time periods. The index is mostly specified with endpoints, since with endpoints you can create the index you need to get to higher time levels (from day to week / etc etc). See code example 3 and 4.
Remember to use matrix functions with period.apply if you have more than 1 column of data since xts is basicly a matrix and an index. See code example 5.
More info on this data.camp course.
library(xts)
data(sample_matrix)
zoo.data <- zoo(rnorm(31)+10,as.Date(13514:13744,origin="1970-01-01"))
# code example 1
to.quarterly(sample_matrix)
sample_matrix.Open sample_matrix.High sample_matrix.Low sample_matrix.Close
2007 Q1 50.03978 51.32342 48.23648 48.97490
2007 Q2 48.94407 50.33781 47.09144 47.76719
# same as to.quarterly
to.period(sample_matrix, period = "quarters")
sample_matrix.Open sample_matrix.High sample_matrix.Low sample_matrix.Close
2007 Q1 50.03978 51.32342 48.23648 48.97490
2007 Q2 48.94407 50.33781 47.09144 47.76719
# code example 2
to.period(zoo.data, period = "quarters")
zoo.data.Open zoo.data.High zoo.data.Low zoo.data.Close
2007-03-31 9.039875 11.31391 7.451139 10.35057
2007-06-30 10.834614 11.31391 7.451139 11.28427
2007-08-19 11.004465 11.31391 7.451139 11.30360
# code example 3 using base standard deviation in the chosen period
period.apply(zoo.data, endpoints(zoo.data, on = "quarters"), sd)
2007-03-31 2007-06-30 2007-08-19
1.026825 1.052786 1.071758
# self defined function of summing x + x for the period
period.apply(zoo.data, endpoints(zoo.data, on = "quarters"), function(x) sum(x + x) )
2007-03-31 2007-06-30 2007-08-19
1798.7240 1812.4736 993.5729
# code example 5
period.apply(sample_matrix, endpoints(sample_matrix, on = "quarters"), colMeans)
Open High Low Close
2007-03-31 50.15493 50.24838 50.05231 50.14677
2007-06-30 48.47278 48.56691 48.36606 48.45318
Upvotes: 1