Reputation: 35
I have the following data frame and I want to replace the reflectance values with NA depending on whether or not a wavelength value falls in a certain grouping of ranges that were determined to be bad measurements (badData vector).
The ranges of bad data might change over time so I would like the solution to be as general as possible.
badData <- c(296:310, 330:335, 350:565)
df <- data.frame(wavelength = seq(300,360,5.008667),
reflectance = seq(-1,-61,-5.008667))
df
wavelength reflectance
300.0000 -1.000000
305.0087 -6.008667
310.0173 -11.017334
315.0260 -16.026001
320.0347 -21.034668
325.0433 -26.043335
330.0520 -31.052002
335.0607 -36.060669
340.0693 -41.069336
345.0780 -46.078003
350.0867 -51.086670
355.0953 -56.095337
I have tried
Data2 <- df %>%
mutate(reflectance = replace(reflectance,wavelength %in% badData, NA))
But because I am trying to do this with wavelength ranges rather than exact values this will not work. I am thinking I should use a conditional statement, but I do not know how to feed a vector with different groupings of ranges through that most efficiently.
The output dataset would be because wavelengths 300.000 and 305.0087 fall between 296 and 310, wavelength 330.05620 is between 330 and 335 and 350.0867 and 355.0953 fall between 350:565.
wavelength reflectance
300.0000 NA
305.0087 NA
310.0173 -11.017334
315.0260 -16.026001
320.0347 -21.034668
325.0433 -26.043335
330.0520 NA
335.0607 -36.060669
340.0693 -41.069336
345.0780 -46.078003
350.0867 NA
355.0953 NA
Upvotes: 1
Views: 2581
Reputation: 161110
The first step is to realize that defining ranges of integers will not work. Instead, I'll go with a list of number pairs:
badData <- list(c(296,310), c(330,335), c(350,565))
with the understanding that we want to check each $wavelength
to be within any of these three ranges. More ranges are supported.
The second thing we can do is write a function that checks if a vector of values is within one or more pairs of numbers. (In this example, we "know" that it will not be in more than one, but that's not critical.)
within_ranges <- function(x, lims) {
Reduce(`|`, lapply(lims, function(lim) lim[1] <= x & x <= lim[2]))
}
To understand what this is doing, let's debug it, call it, and see what's going on.
debugonce(within_ranges)
within_ranges(df$wavelength, badData)
# debugging in: within_ranges(df$wavelength, badData)
# debug at #1: {
# Reduce(`|`, lapply(lims, function(lim) lim[1] <= x & x <=
# lim[2]))
# }
Let's just run that inner portion:
# Browse[2]>
lapply(lims, function(lim) lim[1] <= x & x <= lim[2])
# [[1]]
# [1] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
# [[2]]
# [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
# [[3]]
# [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
So the first element (T,T,F,F,...) is whether the values (x
) fall within the first number pair (296 to 310); the second element with the second pair (330 to 335); etc.
The Reduce(
part calls the first argument, a function, on the first two arguments, saves the return, and then runs the same function on the return and the third argument. It stores it, then runs the same function on the return and fourth argument (if exists). It repeats this along the entire length of the provided list.
In this example, the function is the literal |
(escaped since it is special), so it is "OR"ing the [[1]]
vector with the [[2]]
vector. You can actually see what is happening if you add accumulate=TRUE
:
# Browse[2]>
Reduce(`|`, lapply(lims, function(lim) lim[1] <= x & x <= lim[2]), accumulate=TRUE)
# [[1]]
# [1] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
# [[2]]
# [1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
# [[3]]
# [1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
The first return is the first vector, unmodified. The second element is the original [[2]]
vector ORed with the previous return which is this [[1]]
vector (which is the same as the original [[1]]
). The third element is the original [[3]]
vector ORed with the previous return, which is this [[2]]
. This results in the three groupings of TRUE
(1, 2, 7, 11, 12) that you are expecting. So we want the [[3]]
element, which is what we get without accumulating:
# Browse[2]>
Reduce(`|`, lapply(lims, function(lim) lim[1] <= x & x <= lim[2]))
# [1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
Okay, so let's Q
uit out of the debugger, and give it a full go:
within_ranges(df$wavelength, badData)
# [1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
This output looks familiar.
(BTW: inside our function, we could also have used
rowSums(sapply(lims, ...)) > 0
and it would have worked just as well. For that, though, you need to realize that
sapply
should be returning amatrix
with as many columns as we have rows of data indf
, odd if you aren't familiar.)
Now, we can NA
ify what we need to either with dplyr
:
df %>%
mutate(
reflectance = if_else(within_ranges(wavelength, badData), NA_real_, reflectance)
)
# wavelength reflectance
# 1 300.0000 NA
# 2 305.0087 NA
# 3 310.0173 -11.01733
# 4 315.0260 -16.02600
# 5 320.0347 -21.03467
# 6 325.0433 -26.04333
# 7 330.0520 NA
# 8 335.0607 -36.06067
# 9 340.0693 -41.06934
# 10 345.0780 -46.07800
# 11 350.0867 NA
# 12 355.0953 NA
Edit: or another dplyr
, using your first thought of replace
(not my first by habit, no reason):
df %>%
mutate(
reflectance = replace(reflectance, within_ranges(wavelength, badData), NA_real_)
)
or base R:
df$reflectance <- ifelse(within_ranges(df$wavelength, badData), NA_real_, df$reflectance)
df
# wavelength reflectance
# 1 300.0000 NA
# 2 305.0087 NA
# 3 310.0173 -11.01733
# 4 315.0260 -16.02600
# 5 320.0347 -21.03467
# 6 325.0433 -26.04333
# 7 330.0520 NA
# 8 335.0607 -36.06067
# 9 340.0693 -41.06934
# 10 345.0780 -46.07800
# 11 350.0867 NA
# 12 355.0953 NA
Notes:
NA_real_
, both for clarity (did you know there are different types of NA
?), and partly because in the use of dplyr::if_else
, it will complain/fail if the classes of the "true" and "false" arguments are not the same (NA
is technically logical
, not numeric
as your reflectance
is);dplyr::if_else
for the first example, since you're already using dplyr
, but in case you choose to forego dplyr
(or somebody else does), then the base-R ifelse
works, too. (It has its liabilities, but it appears to work just fine here.)Upvotes: 7
Reputation: 796
How about dplyr::between()
?
library(dplyr)
df %>%
mutate(
reflectance = case_when(
between(wavelength, 296, 310) ~ NA_real_,
between(wavelength, 330, 335) ~ NA_real_,
between(wavelength, 350, 565) ~ NA_real_,
TRUE ~ reflectance
)
)
Upvotes: 1
Reputation: 13135
Here is a solution based on create a dataframe for badData
and tidyr::crossing
. Using crossing
we can get all combinations between the two dataframes.
badData <- data.frame(start= c(296,330,350),end=c(310.01,335,565))
library(dplyr)
library(tidyr)
library(data.table)
df %>% crossing(badData) %>%
mutate(Flag=ifelse(data.table::between(wavelength,start,end),1,0)) %>%
arrange(wavelength,desc(Flag)) %>% #Make sure 1 'if exist' at the 1st row for each wavelength before run distinct
distinct(wavelength,.keep_all=T) %>%
mutate(reflectance_upd=ifelse(Flag==1,NA,reflectance))
wavelength reflectance start end Flag reflectance_upd
1 300.0000 -1.000000 296 310.01 1 NA
2 305.0087 -6.008667 296 310.01 1 NA
3 310.0173 -11.017334 296 310.01 0 -11.01733
4 315.0260 -16.026001 296 310.01 0 -16.02600
5 320.0347 -21.034668 296 310.01 0 -21.03467
6 325.0433 -26.043335 296 310.01 0 -26.04333
7 330.0520 -31.052002 330 335.00 1 NA
8 335.0607 -36.060669 296 310.01 0 -36.06067
9 340.0693 -41.069336 296 310.01 0 -41.06934
10 345.0780 -46.078003 296 310.01 0 -46.07800
11 350.0867 -51.086670 350 565.00 1 NA
12 355.0953 -56.095337 350 565.00 1 NA
Upvotes: 0
Reputation: 1233
I think this will help.
library(TeachingDemos)
df$reflectance <- ifelse(296 %<% df$wavelength %<% 310 | 330 %<% df$wavelength %<% 335 | 350 %<% df$wavelength %<% 565, NA, df$reflectance)
> df
wavelength reflectance
1 300.0000 NA
2 305.0087 NA
3 310.0173 -11.01733
4 315.0260 -16.02600
5 320.0347 -21.03467
6 325.0433 -26.04333
7 330.0520 NA
8 335.0607 -36.06067
9 340.0693 -41.06934
10 345.0780 -46.07800
11 350.0867 NA
12 355.0953 NA
Upvotes: 0