susim
susim

Reputation: 231

pandas Consolidate same values in the same row

There are the following data:

  board_href_deals       items  test1
0            test2  {'x': 'a'}  test1
1            test2  {'x': 'b'}  test2

After grouping "board_href_deals", I would like to output the existing data in a list format as follows:

 board_href_deals                     items     test1
0            test2  [{'x': 'a'}, {'x': 'b'}]    ['test1', 'test2']

thank you

Upvotes: 2

Views: 69

Answers (2)

jpp
jpp

Reputation: 164773

An alternative solution, especially on older versions of Pandas, is to use GroupBy + apply on a sequence, then combine via concat.

Benchmarking on Python 3.60 / Pandas 0.19.2. This contrived example has a small number of groups; you should test with your data if efficiency is a concern.

import pandas as pd

df = pd.DataFrame({'A': ['test2', 'test2', 'test4', 'test4'],
                   'B': [{'x': 'a'}, {'x': 'b'}, {'y': 'a'}, {'y': 'b'}],
                   'C': ['test1', 'test2', 'test3', 'test4']})

df = pd.concat([df]*10000)

def jpp(df):
    g = df.groupby('A')
    L = [g[col].apply(list) for col in ['B', 'C']]
    return pd.concat(L, axis=1).reset_index()

%timeit jpp(df)                                 # 11.3 ms per loop
%timeit df.groupby('A').agg(lambda x: list(x))  # 20.5 ms per loop

Upvotes: 1

jezrael
jezrael

Reputation: 863196

Use DataFrameGroupBy.agg, tested in pandas 0.23.4:

df = df.groupby('board_href_deals', as_index=False).agg(list)
print (df)
  board_href_deals                     items           test1
0            test2  [{'x': 'a'}, {'x': 'b'}]  [test1, test2]

Thank you @jpp for solution for oldier pandas:

df = df.groupby('board_href_deals').agg(lambda x: list(x))

Upvotes: 2

Related Questions