Reputation: 13718
I want to convert below pandas code to pysaprk.
d = {'has_discount':'count',
'clearance':'count',
'count': ['count', 'sum'],
'price_guide':'max'}
df.index = timestamp2datetime(df.time_create, unit='ms')
df1 = df.resample('D').agg(d)
df1.columns = df1.columns.map('_'.join)
d1 = {'has_discount_count':'discount_order_count',
'clearance_count':'clearance_order_count',
'count_count':'order_count',
'count_sum':'sale_count',
'price_guide_max':'price_guide'}
df2 = df1.rename(columns=d1)
However there is no resmaple in pysaprk, try to use groupby instead:
d = {'has_discount':'count',
'clearance':'count',
'count': ['count', 'sum'],
'price_guide':'max'}
df.select(date_format(from_unixtime(df.time_create/1000),'yyyy-MM-dd').alias('day')).groupby('day').agg(d).show(5)
But got error
AnalysisException: u'Cannot resolve column name "price_guide" among (day);'
Pyspark's aggregation seems not support input like d
. What should I do?
Upvotes: 2
Views: 696
Reputation: 6385
df.select
you're using leave you with only one column day
, but in aggregation statetement you're using other columns.
What you probably want, is to add column day
to others that exists:
df.withColumn('day', date_format(from...
Upvotes: 1